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Abstract 
 
The Pareto Archived Dynamically Dimensioned Search (PA-DDS) algorithm is introduced in this 
paper as a method to calibrate microscopic traffic simulation platforms.  This algorithm was 
originally developed to calibrate hydrological rainfall/runoff microscopic simulation platforms.  In 
this study, the algorithm is applied to the VISSIM traffic simulation platform to calibrate freeway 
driving behaviour.  Data from the Federal Highway Administration (FHWA) Next Generation 
Simulation (NG-SIM) database is used.  The following three objectives are used in the 
calibration: i) root-mean-squared-percentage-error (RMSPE) of speed, ii) RMSPE volume, and 
iii) RMSPE Crash Potential Index (a surrogate safety performance metric).  Four other 
experiments were also undertaken, and are: 1) single-criteria using RMSPE speed, 2) single-
criteria using RMSPE volume, 3) single criteria using RMSPE CPI, and 4) weighted summation 
(RMSPE speed + RMSPE volume + RMSPE CPI).  The case study demonstrates that the PA-
DDS algorithm provides acceptable errors for all three objectives compared to the other 
methods. 
 
1. Introduction 
 
Microscopic traffic simulation models have been receiving increasing attention as an effective 
means of analyzing traffic operations and safety for a wide spectrum of mitigating factors [1-3].  
Critics of these types of models, however, have argued quite effectively that the results obtained 
from simulation have not been adequately verified with regard to observational data, and hence 
can be suspect when compared to reality.  A major challenge to a more extensive adoption of 
traffic simulation models remains bridging the gap between simulated and real-world driving 
experience [4].  To bridge this gap it is important that input parameters into the underlying 
simulation models be fully calibrated in terms of real-time observational traffic data. Given the 
complexity of these models and the large number of parameters in need of specification, the 
nature of calibration is a multi-faceted and iterative process. 
 
The literature cites several studies with the primary intent of calibrating traffic simulation models.  
The early researches have focused on evolutionary-based search algorithms for calibration 
based on a single criterion fitness function (e.g. travel time or flow) [5-9], with the results 
summarized in Table 1. 
 

The single criterion calibration approach, however, fails to recognize that traffic is a multi-
faceted entity, wherein accuracy in one attribute (e.g. travel time or speed) does not ensure 
accuracy in another attribute (e.g. acceleration or spacing). This suggests that there are trade-
offs that need to be taken into account in microscopic traffic model calibration. 
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Table 1: Single-Criteria Parameter Calibration Studies 

 
 
Multi-criteria calibration has been proposed by a number of researchers [10-11] and applied by 
others [12-13] as summarized in Table 2.  We note that many of these “multi-criteria” calibration 
studies have been limited to reducing error in two related traffic attributes: speed and volume.  
Errors in these attributes are normally treated independently. 
 

Table 2: ‘Multi-Criteria’ Parameter Calibration 

 
 

There are two basic shortcomings associated with current multi-criteria calibration studies: 1) 
Errors in specific traffic attributes have not been investigated with respect to their effect on 
overall model goodness-of-fit.  Any thorough calibration exercise must be able to identify the 
trade offs in error for different attributes, and its effect on overall model goodness-of-fit.  2) 
While several studies have recognized this issue, their attempts to resolve it have focused on 
subjective weighting procedures [12-13].  The problem with this approach is that the weights 

Study
Type of 

optimization
Model Network Type

Measure of 
Performance

results of best 
parameter estimate

Notes

Hourdarkis et. al (2003) heuristic search AIMSUM Freeway volume 8.84 % (RSPE)
Root mean square 
percentage error

Park and Qi (2005) genetic algorithm VISSIM
Freeway 

interchange
travel time 12.6 % (RSPE)

Root mean square 
percentage error

Kim et. al (2005) genetic algorithm VISSIM Freeway network travel time 1 % (MAER)
Mean absolute error 

ratio

Ma and Abdulhai (2002) genetic algorithm PARAMICS Arterial network flows 46.09 % (GRE) Global relative error

Cunto and Saccomanno 
(2008)

genetic algorithm VISSIM Intersection
CPI (Crash 

Potential Index)
0.026 % (RSPE)

Root mean square 
percentage error

Study Type of Optimization Model Network 
Measures of 
Performance Results Note

Toledo et. al. (2004) iterative averaging MITSIMLab Freeway
Speed and 
Density

4.6 % (MAE for 
speed)

Only speed data shown; does 
not apply multi-criteria 
framework

Balakrishna et. al. 
(2007)

Simultaneous 
Perturbation 
Stochastic 
Approximation 
(SPSA)

MITSIMLab Freeway
Volume 
(Counts)

22 to 65 % 
(RMSPE)

Introduces a multi-criteria 
framework but does not apply it

Ma et. al. (2007) SPSA PARAMICS Freeway
Link capacity 
and critical 
occupancy

0.70 % (Sum of 
GEH)

Two-criteria calibration

Ciuffo et. al. (2008) OptQuest/Multistart 
Heuristic) OQMS

AIMSUM Freeway
Volume 
(Counts) and 
Speed

11 % (RMSPE 
speed); 17% 
(RMSPE 
Volume)

Two-criteria calibration

Duong et. al. (2010) Genetic Algorithm VISSIM Freeway Volume and 
Speed

1.9 % (RMSPE 
Speed); 10.5 % 
(RMSPE 
Volume)

Introduces the concept of 
Pareto opt imality (non 
dominance)  to the traffic 
calibration problem

Huang and Sun 
(2009)

NSGA II VISSIM Freeway Volume and 
Speed

1.0 (Volume 
Fitness) and 0.97 
(Speed Fitness)

Applies the NSGA II without 
looking at the resultant non 
dominance set
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themselves are treated externally to the calibration itself, and their values are selected 
arbitrarily. 
 
In their formulation, Fonseca and Fleming combined Pareto optimality with Genetic Algorithm to 
solve multi-criteria calibration problems [16], also referred to as Multi-objective Genetic 
Algorithm (MOGA).  In the MOGA calibration, instead of converting the multi-criteria calibration 
into a single fitness function using weighted goodness-of-fit expression (e.g. weighted 
summation), trade-offs in different fitness functions were considered explicitly.  The result of the 
MOGA calibration is a set of points known as the Pareto (non-dominated) set.  Each point in this 
set is optimal in that no improvement can be achieved in one criterion without a corresponding 
degradation in at least one other criterion (trade-offs). 
 
Huang and Sun [15] used the NSGA II in their calibration of VISSIM model for application to a 
freeway segment; however, this study did not explore the non-dominance issue and used only 
two-objectives (speed and volume error). Pareto optimality was adopted by Duong et al [14] for 
the calibration of a microscopic traffic simulation model (VISSIM platform).  In other fields of civil 
engineering, such as structural and hydrology, MOGA have been explored extensively to solve 
multi-criteria calibration problems [17-21], as summarized in Table 3. 
 

Table 3: MOGA Problems Outside of Transportation 

 
 
The studies in Table 3 found that MOGAs provides a better means of calibration for multi-criteria 
calibration than a conventional weighted approach.  Knowles and Corne [22] improved the 
conventional MOGA approach by formulating a new class of algorithms, called the Pareto 
Archive Evolutionary Stragtegy (PAES), where the Pareto set is recorded throughout the 
iterations.  The next generation of ‘offspring genes’ are created from mutation and/or crossover 
of ‘parent genes’ from the current Pareto set, and replaces the ‘parent genes’ if they dominate 
them -- ‘genes’ are model parameter sets.  In this paper, a PAES called the Pareto Archived 
Dynamically Dimensioned Search Algorithm (PA-DDS), developed by Asadzadeh and Tolson 
[23], is introduced and applied to a microscopic traffic platform calibration case-study. 
 
 
 

Study Field
Type of 

Optimization Problem Measures of Performance

Shea et al (2006) Structural/ 
Construction Ant Colony Building Envelope Design

11 criteria, including costs, 
lighting, thermal conduction, 
veiw of the Eiffel Tower

Koski (1994) Structural/ 
Construction Heuristic Design of a Flexural Plate 2 criteria, weight and 

deflection

Madsen (2000) Hydrology
Shuffled Complex 
Evolution Algorithm

MIKE 11/NAM rainfall-runoff 
model

4 criteria, overall volume, 
overall error, peak flow, low 
flow

Yapo et al (1998) Hydrology

Multi-objective 
complex evolution 
global optimization 
algorithm

Sacramento Soil Moisture 
Accounting Model and 
National Weather Service 
River Forcasting System

2 criteria, two fitting functions 
for flows

Cheng et al (2002) Hydrology
Fuzzy Optimal 
Genetic Algorithm

Conceptual rainfall–runoff 
models (CRRS)

3 criteria, rainfall, runoff and 
evaporation
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The study described in this paper has three specific objectives: 
 

1) Introduce the PA-DDS algorithm and undertake a multi-criteria calibration with the 
Measures of Performances (MOPs) of: i) single root-mean-squared-percentage-error 
(RMSPE) of speed, ii) RMSPE volume, and iii) RMSPE Crash Potential Index (a 
surrogate safety performance metric). 
 

2) Undertake traditional calibration of: 1) single-criteria using RMSPE speed, 2) single-
criteria using RMSPE volume, 3) single criteria using RMSPE CPI, and 4) weighted 
summation (RMSPE speed + RMSPE volume + RMSPE CPI). 
 

3) Determine how the introduction of a dominance/non-dominance Pareto affects the 
efficiency of the parameter search procedure.  

 
This study makes use of observed vehicle tracking data obtained from the FHWA, NG-SIM 
program for Interstate Highway No. 101 in California [24] and the VISSIM (version 4.3) traffic 
simulation platform. 
 
2. CALIBRATION APPROACH 
 
The calibration approach adopted in this study consists of three basic steps:  
 
1)   Selection of appropriate measure of performance (traffic attributes of interest) and 

specification of attribute fitness functions. 
2)  Selection of model input parameters that have a significant effect on the attribute 

performance functions. 
3)  Obtaining the best estimate parameter values. 
 
In general the measure of performance (MOP) will depend on the type of study being 
undertaken [25]. For example, if the objective is to investigate traffic operations, then speed, 
volume and acceleration are important.  If however, road safety is the underlying concern, then 
we would be interested in factors affecting vehicle interactions, such as differentials in speed, 
acceleration and spacing. Ciuffo and Punzo [26] used AIMSUN to assess the effect of different 
fitness functions on model calibration, and found that the choice of the fitness functions had a 
significant effect on the calibration results. 
 
Screening parameter inputs for statistical significance can have an effect on reducing the 
number of parameters in need of calibration.  Cunto and Saccomanno [9] used factorial 
experiment design to statistically determine those parameters that had a statistically significant 
affect on the safety performance measure called the Crash Potential Index (CPI).  The best 
estimate values of significant parameters were obtained using a single-criterion SP-based 
calibration with a VISSIM simulation platform.  For an urban intersection application, the 
exercise successfully reduced the number of parameters in the search field from 30+ inputs 
required by VISSIM to three significant parameters.  Duong et al [14] also adopted a factorial 
experiment design to determine significant parameters affecting speed and volume for a VISSIM 
freeway application. In this study, the number of parameters was reduced from 30+ to 7.  The 
results of the analysis are summarized in Table 4.  The lower and upper bound values for these 
significant parameters are shown.  It should be noted that these parameters can be changed up 
to the second decimal place. 
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Table 4: VISSIM Parameters that Affect MOPs of Speed, Volume, and CPI [27] 

 
 
3. Multi-criteria procedure for obtaining best estimate parameter values 
 
The basic aim of the calibration exercise discussed in this paper is to obtain accurate values of 
the significant parameter inputs used in traffic simulation models.  Accuracy in the specification 
of these parameters ensures traffic outputs that are representative of observational real-world 
conditions. The Pareto Archived Dynamically Dimensioned Search Algorithm (PA-DDS), 
developed by Asadzadeh and Tolson [23], is a modification of the original DDS algorithm, 
developed by Tolson and Shoemaker [28], to include non-dominance and crowding distance.  
The DDS algorithm was a global optimization algorithm created to calibrate hydrologic rainfall-
runoff simulation platforms. The PA-DDS pseudo code can be found below [23]: 
 
Step 0 – Define the measures of performances, n objectives 
Step 1 – Optimize each measure of performance using a portion of the computational budget 
(e.g. in this case minimize each objective) 

• Use DDS to optimize each objective using n trials 
• Sort the resultant trials into a non-dominated set called the ‘external set’ using 

the ‘fast non-dominated sort’ algorithm developed by Deb et al [29] 
Step 2 – Select a ‘current’ solution, xcurrent

• Calculate crowding distance as proposed by Deb et al [
, from the external set 

29] 
• Selection based on roulette wheel with emphasis on picking solutions from less 

crowded regions 
Step 3 – Sample one new solution and evaluate 

• Generate a new solution, xnew
28

, by perturbing the current solution as defined in the 
original DDS algorithm  

• Check the dominance of xnew

• If computation budget is not exceeded 
 against the external set 

o If Xnew is non-dominated  then Set Xcurrent = X
o Else, go back to Step 3 

new 

Parameter Description
Lower 
Bound

Upper 
Bound

(max) Look ahead 
Distance (m)

Defines the distance that vehicles can see forward to react to other vehicles in front 
or beside it on the same link

50.00 300.00

CC0 Standstill distance (m), which defines the desired distance between stopped 
vehicles

0.50 3.00

CC1 Headway time, is the time in seconds that a driver wants to keep. Setting a high 
value will make drivers more cautious

0.50 1.75

CC3 Threshold for entering Following, controls the start of the deceleration process.  By 
setting this higher, a driver will wait longer before decelerating to the safe distance. -15.00 -4.00

CC5
For positive speed differences; following thresholds control the speed differences 

during the following state. Smaller values result in a more sensitive reaction of 
drivers to accelerations or decelerations of the preceding car

0.10 2.00

Accepted 
deceleration

For the trailing vehicle. -2.50 -0.25

Safety distance 
reduction factor

takes effect for; a) the safety distance of the trailing vehicle in the new lane for the 
decision whether to change lanes or not, b) the own safety distance during a lane 

change and c) the distance to the leading (slower) lane changing vehicle.
0.20 0.80
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• Else, Stop  
 
The DDS pseudo code is thus [28]: 
 
Step 1 – Define the DDS inputs:  

o Neighbourhood perturbation size, r (0.2 is the default value) 
o Iteration size, m 
o The lower and upper bounds of the D parameters, xmin and x
o Initial solution, x

max 
o=[x1, ...,xD

Step 2 – Set the counter i = 1, evaluate measure of performance F, F
] 

best = F(xo) and xbest = x
Step 3 – Randomly choose J of D parameters for inclusion in the neighbourhood set {N}. If {N} 

is empty then select one random parameter 

o 

Step 4 – For j = 1...J parameters in {N}, perturb xj
best

o x
 using the standard normal variable, N(0,1): 

j
new = xj

best + r(xj
max – xj

min

o If x
)*N(0,1) 

j
new < xj

min then xj
new = x

jmin + (xj
min – xj

o If x
new) 

j
new > Xj

max, set xj
new = xj

o If x
min 

j
new > xj

max then xj
new = xj

max – (xj
new – xj

max

o If x
) 

j
new < xj

min, set xj
new = xj

Step 5 – Evaluate new F(x
max 

new) and update best solution if F(xnew) ≤ Fbest then Fbest = F(xnew) and 
xbest = x

Step 6 – Update iteration counter i = i + 1, stop if i = m, else go to Step 3 
new 

 
For this study, a root mean square percentage error function is defined of the form: 

                      Root Means Squared Percentage Errork

Where,  S

 = �1
𝑛𝑛
∑ �𝑆𝑆𝑡𝑡

𝑘𝑘−𝑂𝑂𝑡𝑡
𝑘𝑘

𝑂𝑂𝑡𝑡
𝑘𝑘 �

2
                (1) 

t
                           O

 =  simulated value for traffic factor k (e.g. speed) at time increment t 
t

                           n =    number of time increments in simulation 
 = observed value for traffic factor k at time increment t       

 
The solutions obtained in the DDS include both dominated and non dominated solutions, with 
the optimum set of parameter values occurring in the non-dominated region. The mathematical 
definitions for non-dominance and dominance are as follows [16]: 

 
Definition 1 (inferiority or dominated) 
 
A vector j = (j1, …, jn) is said to be inferior to (or dominated by) k = (k1,…, kn

 

) if k is 
partially less than j (k p < j), i.e., 

∀ i = 1, …,n ; ki ≤ j i   /\  ∃ i = 1, …,n : ki < j
 

i 

Definition 2 (superiority) 
 
A vector j = (j1, …, jn) is said to be superior to k = (k1,…, kn

 
) if k is inferior to j 

Definition 3 (non-inferiority or non-dominated) 
 
Vectors j = (j1, …, jn) and k = (k1,…, kn

 

) are said to be non-inferior (non-dominated) by 
one another if k is neither inferior nor superior to j. 
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Simulation runs, i, can be ranked into a series of non-dominated classes, cni

 

, where lower 
values of n correspond to higher non-dominated sets (Figure 1). 

 
FIGURE 1: Graphical illustration of non-dominated sets 

 
The crowding distance procedure was introduced by Deb et al [29] in order to introduce ‘elitism’ 
to their algorithm called the NSGA (e.g. we discriminate against solutions on more crowded 
regions of the solution space).  As illustrated in Figure 2, for each point on the same non-
dominated set a cuboid is established with respect to its two neighbouring points and a 
crowding distance, Idi

 

, is estimated in terms of the average of the cuboid lengths.  As noted 
previously, the PA-DDS algorithm adopts the same ‘elitism’ through crowding distance. 

 
FIGURE 2: Graphical depiction of crowd distance calculations 

 
 

F1 

F2 

Non-dominated set 1 

i-1 

i+1 

i 

0 

L Cuboid 

f1 

f2 

c4 (purple) 

Highest ranked set c1 (blue) 

c3 (green) 

J1 

J2 

K2 
K1 

c2 (red) 
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4. CASE STUDY 
 

The observed vehicle tracking data was extracted from the FHWA NG-SIM Interstate Highway 
101 dataset [24]. A schematic of the study area is illustrated in Figure 3.  This vehicle tracking 
data was taken from a segment of Highway 101, California, on June 15, 2005 from 7:50 am to 
8:05 am.  The significant parameters that affected volume, speed and CPI in VISSIM were 
determined using the fractional factorial procedure described in the research by Duong et al 
[14].  Tables 5 - 8 shows the results of single objective DDS calibrations using: 1) single-criteria 
using RMSPE speed, 2) single-criteria using RMSPE volume, 3) single criteria using RMSPE 
CPI, and 4) weighted summation (RMSPE speed + RMSPE volume + RMSPE CPI), 
respectively. The iteration count for the single-criteria DDS calibration was set to 20. 
 
 
 
 
 
 
 
 
 

FIGURE 3:NG-SIM Highway 101 Study Area 
 
From Table 5, the speed criteria calibration, Solution 11 is the best solution, giving an 
acceptable speed error of 21.1%. However, the safety performance metric, CPI, has an 
inadequate error of 92.4%.  This shows the faults of single criteria calibration as only the 
objective used will be minimized explicitly. Table 6 shows the results from a single objective 
DDS calibration using volume error.  Solution 6 had the best volume error of 4.0% and 
acceptable CPI error of 17.9%; however, the speed error was 77.9%.  For the CPI-based 
calibration, shown in Table 7, the lowest CPI error was 6.6%.  The volume errors were 
acceptable at 4.0%, but the speed errors were 78.2%.  None of these parameter sets are 
acceptable for use in a road safety study.  The road safety researcher or practitioner will argue 
that the surrogate safety measure, CPI, need to reflect the real-world. While traffic researchers 
or practitioners will argue that traffic measures, such as speed and volume, need to reflect the 
real-world as well, especially because the surrogate safety measures are themselves functions 
of these very same traffic measures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

640 meter 

Ventura Boulevard On-ramp Cahuenga Boulevard Off-ramp 
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Table 5: DDS Results using Speed RMSPE 

 
 

Table 6: DDS Results using Volume RMSPE 

 
 

 
 
 
 
 
 

Trials

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 
reductio
n factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 151.44 1.81 1.08 -10.37 0.48 -2.19 0.65 95.9 2065 610,042 0.645 0.041 0.311 0.997
2 219.56 2.12 1.08 -10.37 0.48 -2.50 0.37 101.0 2066 203,774 0.732 0.040 0.770 1.543
3 80.50 2.14 1.08 -7.34 0.48 -1.87 0.49 102.0 2066 2,839,001 0.749 0.040 2.206 2.996
4 163.71 1.81 1.21 -11.44 0.48 -1.72 0.62 95.4 2065 373,982 0.636 0.041 0.578 1.255
5 209.47 2.21 1.34 -11.44 0.60 -1.72 0.61 92.4 2064 669,973 0.585 0.041 0.243 0.869
6 209.47 2.21 1.47 -6.11 0.63 -1.72 0.53 84.6 2062 649,650 0.451 0.042 0.266 0.760
7 209.47 2.51 1.55 -7.31 0.63 -1.77 0.53 78.3 2043 235,803 0.343 0.051 0.734 1.128
8 271.44 2.51 1.55 -7.31 0.10 -1.76 0.53 79.2 2047 327,290 0.358 0.049 0.630 1.038
9 223.57 2.32 1.55 -7.31 0.63 -1.77 0.53 80.4 2051 874,467 0.379 0.047 0.012 0.439
10 209.47 2.47 1.55 -10.74 0.63 -1.77 0.53 77.7 2032 384,533 0.333 0.056 0.566 0.955
11 209.47 2.47 1.72 -10.74 0.59 -1.91 0.53 70.6 1963 66,869 0.211 0.088 0.924 1.224
12 209.47 1.97 1.72 -14.03 0.59 -2.03 0.60 72.6 1962 402,531 0.245 0.089 0.545 0.879
13 209.47 2.47 1.72 -9.46 0.74 -1.86 0.53 72.7 1937 235,891 0.247 0.100 0.734 1.081
14 209.47 3.29 1.72 -9.36 0.59 -1.91 0.53 74.0 1913 371,697 0.269 0.111 0.580 0.961
15 209.47 2.47 1.50 -11.09 0.59 -1.91 0.61 84.0 2050 823,323 0.441 0.048 0.070 0.559
16 236.92 2.47 1.55 -13.98 0.59 -1.91 0.51 81.7 2051 365,084 0.401 0.047 0.588 1.036
17 196.64 2.62 1.72 -10.74 0.38 -1.91 0.53 70.7 1954 222,870 0.213 0.092 0.748 1.053
18 190.11 2.55 1.72 -10.74 0.59 -1.91 0.53 71.1 1958 302,332 0.219 0.091 0.659 0.969
19 222.33 2.47 1.72 -10.74 0.59 -1.91 0.53 72.6 1962 389,248 0.245 0.089 0.560 0.894
20 209.47 2.47 1.34 -10.23 0.59 -1.91 0.53 94.1 2064 189,842 0.614 0.041 0.786 1.441

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 104 1992 539,547 0.275 0.0288 0.478 0.782
Observed 58 2153 885,402

Trial

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 

reduction 
factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 59.76 1.12 0.93 -4.63 1.24 -1.11 0.57 103.6 2064 207,594 0.777 0.0413 0.766 1.584
2 135.18 1.12 0.93 -4.63 1.05 -1.28 0.55 99.6 2066 1,588,737 0.708 0.0404 0.794 1.543
3 83.94 0.85 0.52 -4.63 0.93 -1.28 0.62 104.6 2067 1,851,319 0.794 0.0399 1.091 1.925
4 83.94 1.52 0.50 -5.21 0.48 -1.28 0.56 104.5 2068 1,492,440 0.792 0.0395 0.686 1.517
5 129.97 1.52 0.50 -7.62 0.48 -1.42 0.56 103.7 2069 727,334 0.779 0.0390 0.179 0.996
6 118.28 1.55 0.65 -5.72 1.16 -1.42 0.56 104.4 2067 222,437 0.791 0.0399 0.749 1.579
7 129.97 1.52 0.50 -6.99 0.96 -0.56 0.48 104.8 2068 15,661 0.797 0.0395 0.982 1.819
8 170.42 0.61 0.52 -7.05 0.48 -1.42 0.48 103.6 2069 395,737 0.777 0.0390 0.553 1.369
9 129.97 0.76 0.86 -7.24 0.56 -0.90 0.56 103.1 2066 400,221 0.768 0.0404 0.548 1.357
10 143.50 1.52 0.50 -10.14 0.37 -1.42 0.65 103.5 2068 523,447 0.775 0.0395 0.409 1.223
11 182.06 1.79 0.50 -7.62 0.48 -1.42 0.54 102.5 2069 1,604,647 0.758 0.039 0.812 1.609
12 129.97 1.96 0.50 -7.62 0.62 -1.40 0.56 102.9 2069 958,357 0.765 0.039 0.082 0.886
13 129.97 1.52 0.72 -4.00 0.48 -1.42 0.76 101.1 2067 1,822,120 0.734 0.040 1.058 1.832
14 68.82 2.14 0.50 -9.86 0.27 -1.42 0.56 104.4 2058 4,977,715 0.791 0.044 4.622 5.457
15 112.98 1.52 0.50 -12.86 0.71 -1.42 0.56 104.6 2066 444,511 0.794 0.040 0.498 1.332
16 166.31 1.52 0.50 -7.62 0.48 -1.42 0.70 102.2 2069 1,158,228 0.753 0.039 0.308 1.100
17 129.97 0.94 0.65 -8.10 0.48 -1.42 0.71 102.1 2067 824,496 0.751 0.040 0.069 0.860
18 129.97 0.94 0.50 -7.62 0.48 -1.42 0.56 103.7 2069 709,174 0.779 0.039 0.199 1.017
19 129.97 1.52 0.50 -8.10 0.48 -1.42 0.56 103.2 2066 521,645 0.770 0.040 0.411 1.221
20 129.97 1.52 0.65 -7.62 0.48 -1.42 0.56 102.9 2066 624,740 0.765 0.040 0.294 1.100

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 104 1992 539,547 0.020 0.0372 0.534 0.591
Observed 58 2153 885,402
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Table 7: DDS Results using CPI RMSPE 

 
 

Table 8: DDS Results using Weighted Summation of RMSPE 

 
 
In the literature, researchers and practitioners try to overcome the single-criteria calibration 
problem through the use of the ‘multi-criteria’ weighted summation approach.  Basically, they 
sum the errors of all criterions converting the ‘multi-criteria’ problem into a single-criteria 
optimization (e.g. minimize the summation of errors).  Table 8 show the problems that arise from 
this approach.  The first issue is that CPI errors seem to have a disproportionate impact on the 
calibration exercise.  There is little change in both speed and volume errors.  In practice, 

Trials

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 

reduction 
factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 185.64 1.22 0.54 -5.05 0.15 -1.39 0.80 103.5 2068 783,598 0.775 0.0395 0.115 0.930
2 185.64 1.22 0.85 -4.18 0.15 -1.75 0.80 97.1 2066 1,946,692 0.665 0.0404 1.199 1.904
3 138.90 1.70 0.54 -5.05 0.15 -1.69 0.80 102.6 2068 1,027,223 0.760 0.0395 0.160 0.959
4 185.64 1.22 0.77 -4.00 0.81 -1.39 0.72 100.2 2066 1,801,185 0.719 0.0404 1.034 1.793
5 185.64 1.22 0.54 -5.05 0.10 -1.95 0.80 102.8 2068 1,868,404 0.763 0.0395 1.110 1.913
6 185.64 1.22 0.50 -4.20 0.15 -1.35 0.72 103.9 2068 826,564 0.782 0.0395 0.066 0.888
7 119.65 1.66 0.50 -4.20 0.15 -2.82 0.72 102.2 2069 2,373,310 0.753 0.0390 1.680 2.472
8 185.64 1.50 0.50 -4.20 0.15 -1.35 0.72 101.4 2068 3,934,349 0.739 0.0395 3.444 4.222
9 162.27 0.78 0.61 -4.20 0.15 -1.35 0.72 102.6 2067 1,444,319 0.760 0.0399 0.631 1.431
10 244.45 2.27 0.50 -4.20 0.87 -1.12 0.80 95.1 2068 8,999,845 0.631 0.0395 9.165 9.835
11 191.39 1.22 0.50 -4.20 0.10 -1.35 0.54 103.0 2069 1,691,052 0.767 0.0390 0.910 1.716
12 201.57 1.42 0.50 -4.20 0.15 -1.35 0.80 102.3 2067 1,759,941 0.755 0.0399 0.988 1.782
13 237.64 1.04 0.55 -4.52 0.15 -0.99 0.72 101.8 2069 2,867,942 0.746 0.0390 2.239 3.024
14 133.77 0.63 0.50 -4.88 0.15 -1.53 0.72 102.5 2069 1,749,924 0.758 0.0390 0.976 1.773
15 185.64 1.22 0.77 -4.80 0.15 -0.94 0.72 99.9 2069 1,851,269 0.713 0.0390 1.091 1.843
16 140.05 1.22 0.77 -4.20 0.19 -1.34 0.58 102.5 2067 950,139 0.758 0.0399 0.073 0.871
17 248.46 1.35 0.50 -6.40 -0.14 -1.77 0.72 99.7 2069 4,737,069 0.710 0.0390 4.350 5.099
18 223.59 1.22 0.86 -4.20 0.15 -1.35 0.67 99.8 2069 1,176,434 0.712 0.0390 0.329 1.079
19 185.64 1.22 0.50 -4.20 0.15 -1.35 0.63 103.3 2068 1,811,671 0.772 0.0395 1.046 1.857
20 185.64 1.22 0.50 -4.20 0.37 -1.35 0.72 102.0 2071 2,506,836 0.749 0.0381 1.831 2.619

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 104 1992 539,547 0.787 0.0748 0.391 1.253
Observed 58 2153 885,402

Trial

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 

reduction 
factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM of 
RMSPEs

1 143.31 1.01 0.56 -5.26 0.14 -0.42 0.35 102.9 2069 931,768 0.765 0.0390 0.052 0.856
2 143.31 1.01 0.67 -5.68 -0.38 -0.42 0.33 103.5 2066 598,078 0.775 0.0404 0.325 1.140
3 143.31 1.01 0.56 -8.53 0.14 -0.25 0.20 104.8 2069 151,817 0.797 0.0390 0.829 1.665
4 100.31 1.10 0.56 -5.26 0.17 -0.95 0.35 104.7 2068 309,076 0.796 0.0395 0.651 1.486
5 176.98 0.86 0.56 -4.87 0.69 -0.53 0.43 103.0 2068 1,264,603 0.767 0.0395 0.428 1.234
6 164.55 1.05 0.56 -4.00 0.14 -0.42 0.37 104.1 2068 318,775 0.785 0.0395 0.640 1.465
7 189.32 1.11 0.59 -5.26 0.22 -0.42 0.59 102.4 2067 1,697,217 0.756 0.0399 0.917 1.713
8 197.39 0.65 0.70 -5.26 0.14 -0.42 0.35 102.9 2066 866,013 0.765 0.0404 0.022 0.827
9 197.39 1.36 0.70 -5.26 0.28 -0.25 0.35 101.9 2068 1,093,930 0.748 0.0395 0.236 1.023
10 211.12 0.65 0.70 -4.64 0.32 -0.42 0.35 104.1 2067 28,302 0.785 0.0399 0.968 1.793
11 260.95 1.35 0.70 -7.45 0.14 -0.42 0.35 103.0 2064 654,838 0.767 0.0413 0.260 1.068
12 187.97 1.08 0.70 -9.03 0.14 -0.42 0.35 102.4 2067 870,483 0.756 0.0399 0.017 0.813
13 225.70 1.23 0.70 -9.03 0.14 -0.64 0.47 102.6 2066 864,907 0.760 0.0404 0.023 0.823
14 239.38 1.08 0.61 -9.03 0.14 -0.42 0.35 102.0 2068 1,445,721 0.749 0.0395 0.633 1.422
15 246.77 1.08 0.70 -9.03 0.14 -0.25 0.37 101.8 2068 806,006 0.746 0.0395 0.090 0.875
16 185.56 1.91 0.70 -9.03 0.14 -1.61 0.35 101.5 2068 1,015,698 0.741 0.0395 0.147 0.928
17 91.70 1.08 0.70 -9.03 0.14 -0.25 0.35 104.3 2065 942,723 0.789 0.0409 0.065 0.895
18 254.36 1.08 0.70 -6.77 0.14 -0.25 0.30 101.0 2068 1,781,189 0.732 0.0395 1.012 1.784
19 239.30 1.08 0.70 -11.23 0.50 -0.42 0.23 102.5 2068 711,718 0.758 0.0395 0.196 0.994
20 234.31 1.40 1.24 -11.66 0.14 -1.16 0.35 100.0 2067 169,056 0.715 0.0399 0.809 1.564

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 104 1992 539,547 0.027 0.0368 0.469 0.532
Observed 58 2153 885,402
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different weights have to be attributed to the various criterion in order overcome this issue.  
However, there are no conclusive values for these weights in the literature.  Extra data would be 
needed to in order to calibrate these weighting values.  Another problem that arises is the 
weighted summation method can become stuck in local optimums, as is the case in Table 8.  
This is because the weighted summation method, using GA or DDS, archives only one or two 
best solutions from the previous iteration.  
 
The PA-DDS algorithm can overcome the aforementioned problems and is demonstrated with 
the three objectives: i) single root-mean-squared-percentage-error (RMSPE) of speed, ii) 
RMSPE volume, and iii) RMSPE Crash Potential Index (a surrogate safety performance metric).  
Table 9 shows the Pareto set of solutions from the PA-DDS run. 
 

Table 9: Pareto Set of Solutions (Non-dominated Solutions) 

 
 
The PA-DDS overcomes the issue of weights through the use of ‘trade-offs’ or the concept of 
non-dominance (Pareto).  There are no weights needed since the algorithm will allow some 
criterion to become worse in order to improve other criterion.  The other issue of local optimums 
is overcome through the Pareto archive.  In all PAES methods, such as the PA-DDS, the set of 
non-dominated solutions is kept allowing for the random sampling across this set.  Also, the 
criterion does not have to be in the same form in the PAES methods. In the weighted 
summation method all criterion must be in the same form or they cannot be summed.  Within 
the Pareto set found by the PA-DDS exercise (Table 9), Solutions 1 and 2 have acceptable 
errors for all three-criterion.  From the perspective of either the traffic engineer or road safety 
engineer these parameter sets are mutually agreeable to all. 

Pareto 
Solution 
Number

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 
reductio
n factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 240.15 3.00 1.50 -4.00 2.00 -0.25 0.80 76.9 1996 876,037 0.319 0.073 0.011 0.402
2 223.57 2.32 1.55 -7.31 0.63 -1.77 0.53 80.4 2051 874,467 0.3790 0.0474 0.0124 0.4387
3 239.86 3.00 1.49 -11.11 1.01 -1.38 0.80 78.2 2016 691,229 0.3412 0.0636 0.2193 0.6242
4 206.80 3.00 1.62 -13.54 1.62 -1.43 0.79 74.2 1956 618,912 0.2726 0.0915 0.3010 0.6651
5 223.57 2.32 1.55 -7.31 0.78 -1.77 0.53 79.8 2036 661,708 0.3687 0.0543 0.2526 0.6757
6 209.47 2.21 1.47 -6.11 0.63 -1.72 0.53 84.6 2062 649,650 0.4510 0.0423 0.2663 0.7595
7 209.07 2.19 1.65 -6.77 0.62 -1.63 0.30 73.1 2035 477,015 0.2538 0.0548 0.4612 0.7698
8 129.97 0.94 0.65 -8.10 0.48 -1.42 0.71 102.1 2067 824,496 0.7512 0.0399 0.0688 0.8599
9 209.47 2.21 1.34 -11.44 0.60 -1.72 0.61 92.4 2064 669,973 0.5848 0.0413 0.2433 0.8694
10 140.05 1.22 0.77 -4.20 0.19 -1.34 0.58 102.5 2067 950,139 0.7580 0.0399 0.0731 0.8711
11 209.47 1.97 1.72 -14.03 0.59 -2.03 0.60 72.6 1962 402,531 0.2452 0.0887 0.5454 0.8793
12 129.97 1.96 0.50 -7.62 0.62 -1.40 0.56 102.9 2069 958,357 0.7649 0.0390 0.0824 0.8863
13 185.64 1.22 0.50 -4.20 0.15 -1.35 0.72 103.9 2068 826,564 0.7820 0.0395 0.0665 0.8880
14 196.64 2.44 1.72 -7.05 0.38 -1.89 0.53 72.9 1960 360,669 0.2503 0.0896 0.5926 0.9326
15 138.90 1.70 0.54 -5.05 0.15 -1.69 0.80 102.6 2068 1,027,223 0.7597 0.0395 0.1602 0.9594
16 190.11 2.55 1.72 -10.74 0.59 -1.91 0.53 71.1 1958 302,332 0.2195 0.0906 0.6585 0.9686
17 151.44 1.81 1.08 -10.37 0.48 -2.19 0.65 95.9 2065 610,042 0.6448 0.0409 0.3110 0.9967
18 271.44 2.51 1.55 -7.31 0.10 -1.76 0.53 79.2 2047 327,290 0.3584 0.0492 0.6303 1.0380
19 196.64 2.62 1.72 -10.74 0.38 -1.91 0.53 70.7 1954 222,870 0.2126 0.0924 0.7483 1.0533
20 223.59 1.22 0.86 -4.20 0.15 -1.35 0.67 99.8 2069 1,176,434 0.7117 0.0390 0.3287 1.0794
21 166.31 1.52 0.50 -7.62 0.48 -1.42 0.70 102.2 2069 1,158,228 0.7529 0.0390 0.3081 1.1000
22 209.47 2.51 1.55 -7.31 0.63 -1.77 0.53 78.3 2043 235,803 0.3430 0.0511 0.7337 1.1277
23 196.64 2.44 1.72 -7.05 1.16 -1.89 0.34 70.9 1962 91,572 0.2160 0.0887 0.8966 1.2013
24 209.47 2.47 1.72 -10.74 0.59 -1.91 0.53 70.6 1963 66,869 0.2109 0.0882 0.9245 1.2236
25 239.86 3.00 1.49 -12.94 0.80 -1.71 0.53 84.6 2054 240,117 0.4510 0.0460 0.7288 1.2258
26 163.71 1.81 1.21 -11.44 0.48 -1.72 0.62 95.4 2065 373,982 0.6363 0.0409 0.5776 1.2547
27 135.18 1.12 0.93 -4.63 1.05 -1.28 0.55 99.6 2066 1,588,737 0.7083 0.0404 0.7944 1.5431
28 185.64 1.22 0.85 -4.18 0.15 -1.75 0.80 97.1 2066 1,946,692 0.6654 0.0404 1.1987 1.9045
29 185.64 1.22 0.50 -4.20 0.37 -1.35 0.72 102.0 2071 2,506,836 0.7495 0.0381 1.8313 2.6188
30 248.46 1.35 0.50 -6.40 -0.14 -1.77 0.72 99.7 2069 4,737,069 0.7100 0.0390 4.3502 5.0992
31 244.45 2.27 0.50 -4.20 0.87 -1.12 0.80 95.1 2068 8,999,845 0.6311 0.0395 9.1647 9.8353
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5. VALIDATION 
 
Parameters obtained in any calibration exercise must also be properly validated with another set 
of data [25]. The observed vehicle tracking data for the parameter validation is from the same 
FHWA NG-SIM Interstate Highway 101 dataset [24], but is from the time period of 8:20 am to 
8:35 am on June 15, 2005.  Table 10 shows the resultant errors for the validation dataset using 
the parameter values from Pareto Solution 1 and 2. 
 

Table 10: Validation Errors versus Defaults 

 
 
The parameter sets found from the PA-DDS algorithm gives reasonable errors for speed, 
volume and CPI compared to the model default parameters.  
 
6. CONCLUSIONS 
 
This paper introduced the basic concepts of Pareto Archive Evolutionary Strategies (PAES) for 
calibrating microscopic traffic simulation models.  Specifically, the Pareto Archive Dynamically 
Dimensioned Search was demonstrated using the three objectives of: i) root-means-square-
percentage-error (RMSPE) of speed, ii) RMSPE volume, and iii) RMSPE CPI.  This was 
compared to single criterion calibration exercise and a weighted summation calibration exercise. 
The introduction of a dominance/non-dominance (Pareto) archival was shown to improve the 
efficiency of the parameter search. 
 
Pareto optimality should be considered when undertaking the multi-criteria calibration problem.  
‘Trade-offs’ in different traffic attribute errors become more pronounce as the number of 
attributes is increased.  The benefit of the methodology discussed in this paper is that it can be 
used without weights and allow the use of different fitting functions.  Conceivably n criteria can 
be used within the PA-DDS algorithm, where n is greater than or equal to 2. 
 
7. FUTURE WORK 
 
There were several limitations with this study that will need to be addressed in future research: 
 

1) The PA-DDS algorithm has several user-defined values, such as the local search size, 
number of iterations runs, and neighbourhood perturbation size.  A rigorous experiment 
should be carried out to test how changes in these user-defined PA-DDS values will 
affect the search outcomes. 
 

2) The root-mean-square percentage error was used for all three of the criterions.   The 
search algorithm outcome may be affected by the form of the fitness error.  The 
experimentation should be re-done with other fitness function forms, such as the mean 
absolute error and the GEH statistic. 
 

Pareto 
Solution 
Number

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 
reductio
n factor

Speed 
(km/h)

Volume 
(veh)

CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 240.15 3.00 1.50 -4.00 2.00 -0.25 0.80 64.7 1932 1,035,306 0.320 0.009 0.087 0.416
2 223.57 2.32 1.55 -7.31 0.63 -1.77 0.53 67.8 1968 808,162 0.384 0.028 0.152 0.563

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 102.0 1891 793,907 1.082 0.013 0.167 1.261
Observed 49.0 1915 952,591
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3) In this study, only the freeway driving behaviour was calibrated.  Urban driving behaviour 
may be different because of vehicle interactions at intersections that are affected by the 
gap acceptance model.  It is presumed that all three models, car-following, lane-
changing, and gap-acceptance, will need to be calibrated. Data from the urban NG-SIM 
datasets should be used in another experiment to test the transferability the PA-DDS 
algorithm. 
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