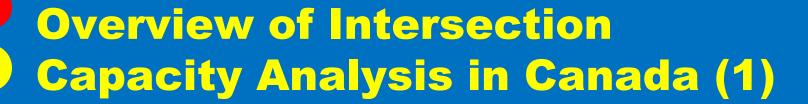

Future Directions for Intersection Capacity Analysis in Canada

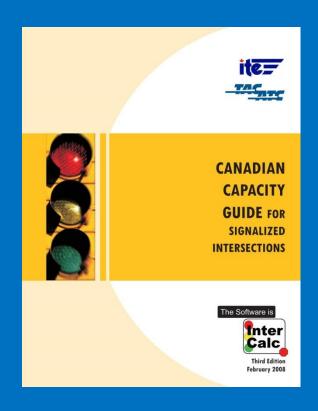
Conversation Circle
CITE Annual Conference
June 2015


Moderated by Jim Gough, P.Eng.

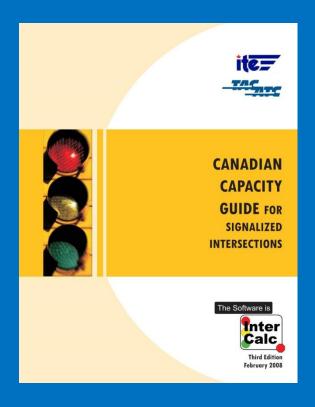
Agenda

- Overview of intersection capacity analysis in Canada
- Education and training
- How to reflect Canadian parameters / experience?
- Software issues and evolution
- Future of intersection capacity and LOS
- Future directions for CITE (and TAC)

Today's Panellists


- Chris Blackwood, Mohawk College
- Margaret Briegmann, BA Consulting Group
- Nixon Chan. MMM Group
- Matt Davis, City of Toronto

- Historically, the Highway Capacity Manual and Canadian
 Capacity Guide for Signalized Intersections were the dominant methodologies
- As analysis became more computerized, Synchro rose to become the tool used by the overwhelming majority
- There are issues associated with both HCM and Synchro
- Are we to be limited to these choices, based on a methodology which may not be accurate?
- How much does that matter?



- More accurate methodology, especially for left turns
- Canadian database
- Excellent teaching tool
 - · A methodology that can be taught
 - Four worked examples
- Student competition
- Recognized by TAC as a national reference
- InterCalc software

Acceptance of the CCG

- Many municipalities in Ontario include the CCG methodology in their guidelines, and accept CCG and Intercalc software results in TIS work, either as a sensitivity/comparison to other methodologies, or as a standalone analysis.
- Commercial competition and lack of integration within transportation industry have left CCG marginalized

- Few universities / colleges teach intersection capacity analysis
 - As software becomes more complicated / more of a black box, more knowledgeable practitioners are needed
 - Cost implications of software for schools
 - Understanding of the traffic engineering concepts is being eroded

- Is a loss of technical skill occurring?
- If so, what should be done about it?
- Is this contributing to the change in perceptions around LOS analysis?
- Is there an educational institution that could manage the CCG and continue to develop it?

How to reflect Canadian parameters and experience?

- American software does not reflect Canadian experience or parameters (e.g. saturation flow)
- Does this matter?
- What do you need to be able to reflect Canadian practices and experience?
- Can we create a home for the CCG and other Canadian elements of practice, so that they survive and grow?

- Software continues to become more complicated and costly
- Little choice available: Synchro, HCS or Vistro
- Do most practitioners understand the implications of the parameters they choose? Do they understand the outputs?
- How can we maintain an informed workforce?
- Is software becoming un-manageable for smaller municipalities, educational institutions and small consulting firms?

- Software platforms / access are changing
 - Internet-based

Is there a market for different software access models within Canada? What opportunities does this offer?

- Some agencies are no longer using intersection LOS as a measure of system performance, or development impact:
 - Switch to measures such as additional volume driving or on other modes
- Others are using vehicular intersection LOS as one of a suite of measures, or are using multimodal LOS
- Will this be purely a big-city phenomenon?
- Should CITE take a position on how intersection LOS is used?

Future directions

- A home for CCG?
- Projects for CITE and TAC:
 - Guide software development?
 - Guide further CCG evolution?
 - Develop software guidelines?
 - Training program?
 - Guidance on how to use intersection LOS?
- Please join our monthly SimCap / CCG calls: email Jeff Walker
 - walkerje@mmm.ca

Contact Info

- CITE representatives to TOMSC
 - Kelly Schmid
 - Mark Merlo
 - Shannon Noonan
 - Greg O'Brien
- Additional CITE committee members:
 - Jim Gough, P.Eng. (goughj@mmm.ca)
 - Dan Havercroft
 - Margaret Briegmann
 - Pedram Izadpanah
 - Jeff Walker
 - Matt Davis

- Nixon Chan
- Sean Nix
- Peter Ilias
- Dave Richardson
- Glen Holland

- More user-friendly layout and text
- Four worked examples, covering a comprehensive range of basic conditions
- Updates on evolving topics e.g. traffic responsive operation, transit priority, safety
- Expanded discussion on Level of Service
- Saturation flow data expanded with more regions represented, and time series data

Guide and Software are Available Online

- Download the Canadian Capacity Guide: www.cite7.org/
- Download a free InterCalc trial version: www.intercalc.ca

Comparing CCG InterCalc to Synchro and HCM Software

Level of Service:

InterCalc LOS is based on the v/c, rather than control delay –presents a more intuitive and definitive picture of the amount of available capacity independent of the time, user, location, etc.

■ Left Inter-green:

A user-defined approach in InterCalc, rather than a fixed calculation that can under-report capacity in busy conditions.

Saturation Flow Adjustments:

InterCalc draws upon a broad database, representing conditions across Canada (instead of general categories).

Pedestrian Crossing Requirements

InterCalc uses inputted crossing distances (not a manual calculation / adjustment).

Comparing CCG InterCalc to Synchro and HCM Software

Queen Street at Chinguacousy Road in Brampton, Ontario

Approach	Movement	Lane Configuration	Volume (veh/h)	Delay in seconds (Volume to Capacity ratio)		
				CCG	HCS	Synchro
Southbound	Right	_	41	16 (0.06)	17 (0.07)	15 (0.06)
	Through	^	342	17 (0.24)	19 (0.28)	16 (0.24)
	Left	_	114	23 (0.42)	61 (0.77)	32 (0.74)
Westbound	Right	 	103	20 (0.16)	21 (0.21)	18 (0.17)
	Through	→	559	41 (0.85)	64 (0.94)	26 (0.77)
	Left		107	28 (0.46)	31 (0.5)	22 (0.42)
Northbound	Right	 	109	22 (0.19)	24 (0.25)	21 (0.21)
	Through	→	566	77 (0.96)	193 (1.07)	37 (0.89)
	Left	_	111	22 (0.18)	28 (0.38)	23 (0.32)
Eastbound	Right	*	51	24 (0.67)	28 (0.75)	18 (0.62)
	Through		493			
	Left		164	24 (0.53)	260 (1.07)	30 (0.78)
Overall				37 (0.83)	82.6 (1.13)	25 (N/A)
				LOS D	LOS F	LOS C

