HIGHWAY 2 TRANSIT PRIORITY MEASURES

CLASS ENVIRONMENTAL ASSESSMENT **Macroscopic and Microscopic Modelling**

CITE REGINA - 2015

June 10, 2015

Nabil Ghariani, P.Eng., PTOE, M.S.C.E.

Ramesh Jagannathan, P.Eng., PTOE

Presentation Outline

- Study Area
- Background and Context
- Modelling Approach
- Challenges
- Macro Modelling
- Micro Modelling
- Hybrid Modelling (Future Conditions)
- Design Alternatives
- Results
- Technical Challenges Input to Evaluation of Alternatives
- Preferred Design (2016)
- Takeaways

Study Area

Background and Context

Durham Region:

- Population 585,000 (2006) => One million (2031)
- Employment 220,000 => 375,000
- Key arterials are operating close to or at capacity

Thus the need to:

- Shift transit mode from 4% to 8%
- Implement Rapid Transit route along HWY 2

Class Environmental Assessment:

- Need and justification for rapid transit service
- Transit Alternatives: median, curb side, HOV, and mixed traffic

HIGHWAY 2 TRANSIT PRIORITY MEASURES CLASS EA

Study Area

Background and Context

<u>Plans and Studies</u>: OP, TMP, transit amalgamation, MoveOntario, Metrolinx Big Move, LTTS, Regional cycling plan, Quick Win funding

Long Term Transit Strategy (LTTS) – Recommended Plan

Background and Context

LTTS Vision for HWY 2 (2031): Median light rail with four traffic lanes and bicycle facility

Modelling Approach

- Traffic data collection and Quality Control (QC)
- Site visits
- Refining the subarea model (emme)

Hybrid Modelling Process:

- Developing network models (in Synchro and VISSIM)
- Calibration and validation of the models
- Conclusion and recommendations

Challenges

- Large network to model (City of Pickering and Town of Ajax)
- A total of 282 signalized and unsignalized intersections (153 Town of Ajax, 126 City of Pickering)
- Strict deadline to complete the assessments (12 months)
- Long wait time to gather information (from agencies and data gathering)
- Hard to debug VISSIM models
- Slow computer to run simulation on large VISSIM (ver. 5.40) models

Information Gathered

Data Collection

- Collected during the same day (AM and PM) in each municipality
- Data collected: TMC, AADT, and Speed profiles
- Travel times
- Queue lengths at key signalized intersections (50th and 95th percentiles)

Site Visits

- Check signal operations
- Confirm lane configurations
- Observe drivers' behaviour

Macro Modelling (emme)

Sub-area network

Macro Modelling Calibration Results (emme)

Macro Modelling Calibration Results (emme)

VISSIM Network (Town of Ajax)

VISSIM Network (City of Pickering)

VISSIM Model (Town of Ajax)

VISSIM Model (City of Pickering)

VISSIM Model (Town of Ajax)

VISSIM Model (City of Pickering)

Results (VISSIM)

Calibration Graphs

Durham Region

DurhamRegion ransit Micro Modelling Calibration Results (VISSIM)

Calibration **Graphs**

Results (VISSIM)

Row Title	% of Turn Volumes GEH <5	% of Turn Volumes 5< GEH <10	% of Turn Volumes GEH >10
All Major Intersections	94%	7%	0%
Highway 2	97%	3%	0%
Westney Road	78%	22%	0%
Harwood Avenue	95%	5%	0%
Salem Road	100%	0%	0%

VISSIM
Calibration
GEH Results

Row Title	% of Turn Volumes GEH <5	% of Turn Volumes 5< GEH <10	% of Turn Volumes GEH >10
All Major Intersections	92%	7%	1%
Highway 2	91%	8%	1%*
Whites Road	91%	9%	0%
Liverpool Road	85%	15%	0%
Brock Road	85%	12%	3%*
Bayly Street	83%	13%	4%*
Finch Avenue	100%	0%	0%

Hybrid Modelling (for future Conditions)

Design Alternatives

Four alternative designs have been considered for widening HWY 2 from 4 to 6 lanes in the three Transit Priority Opportunity Areas

Modelling Results

Segment 1

2016 PM Peak	Mixed Traffic	HOV / BRT Lanes	Curb BRT Lane	Median BRT
Free Flow Time EB (min)	5.9	5.9	5.9	5.9
Transit Travel Time EB (min)	6.4	5.9	5.9	6.1
Delay (min)	0.5	0.0	0.0	0.2
Free Flow Time WB (min)	5.9	5.9	5.9	5.9
Transit Travel Time WB (min)	6.3	6.2	6.2	6.8
Delay (min)	0.4	0.3	0.3	0.9

2021 PM Peak	Mixed Traffic	HOV / BRT Lanes	Curb BRT Lane	Median BRT
Free Flow Time EB (min)	5.9	5.9	5.9	5.9
Transit Travel Time EB (min)	6.4	5.9	5.9	6.4
Delay (min)	0.5	0.0	0.0	0.5
Free Flow Time WB (min)	5.9	5.9	5.9	5.9
Transit Travel Time WB (min)	6.0	6.1	5.9	6.8
Delay (min)	0.1	0.2	0.0	0.9

Modelling Results

2016 PM Peak	Mixed Traffic	HOV / BRT Lanes	Curb BRT Lane	Median BRT
Free Flow Time EB (min)	7.0	7.0	7.0	7.0
Transit Travel Time EB (min)	10.4	10.3	10.3	12.0
Delay (min)	3.4	3.3	3.3	5.0
Free Flow Time WB (min)	7.0	7.0	7.0	7.0
Transit Travel Time WB (min)	8.9	10.0	9.8	10.6
Delay (min)	1.9	3.0	2.8	3.6

2021 PM Peak	Mixed Traffic	HOV / BRT Lanes	Curb	BRT Lane	Median BRT	
Free Flow Time EB (min)	7.0	7.0		7.0	7.0	
Transit Travel Time EB (min)	10.8	10.3		10.3	11.7	
Delay (min)	3.8	3.3		3.3	4.7	
Free Flow Time WB (min)	7.0	7.0		7.0	7.0	
Transit Travel Time WB (min)	13.5	9.6		10.0	10.5	
Delay (min)	6.5	2.6		3.0	3.5	

Modelling Results

2016 PM Peak	Mixed Traffic	HOV / BRT Lanes	Curb BRT Lane	Median BRT	
Free Flow Time EB (min)	12.3	12.3	12.3	12.3	
Transit Travel Time EB (min)	16.6	12.9	12.8	12.9	
Delay (min)	4.3	0.6	0.5	0.6	
Free Flow Time WB (min)	12.3	12.3	12.3	12.3	
Transit Travel Time WB (min)	13.4	13.7	13.7	13.7	
Delay (min)	1.1	1.4	1.4	1.4	

2021 PM Peak	Mixed Traffic	HOV / BRT Lanes	Curb BRT Lane	Median BRT
Free Flow Time EB (min)	12.3	12.3	12.3	12.3
Transit Travel Time EB (min)	17.5	12.6	12.8	11.4
Delay (min)	5.2	0.3	0.5	-0.9
Free Flow Time WB (min)	12.3	12.3	12.3	12.3
Transit Travel Time WB (min)	20.8	14.1	14.1	12.7
Delay (min)	8.5	1.8	1.8	0.4

Technical Challenges – Input to Evaluation

Air quality assessment

Transportation study and modelling

Impacts to property owners and businesses

REVIEWS/STUDIES
COMPLETED TO
DETERMINE IMPACTS AND
THE BEST WAY TO REDUCE
OR MITIGATE THE
IMPACTS...

Terrestrial and aquatic environment reviews

Noise assessment

Engineering needs – utility impacts, cost

Built heritage review

Stormwater management review

Archaeological assessment

Preferred Design (2016)

Curbside bus only lanes with on-road buffered bicycle lanes

This short term (5-year) design to have regard for long term

Takeaways

- Have a clear and well laid out study approach
- Know specific data that should be collected (to reduce time for calibration and validation)
- Develop applications (in Excel and/or Access) for faster data processing
- Finally, plan for long computation and simulation times

QUESTIONS?

BRT on Curb Side

BRT on Median Lane

