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Abstract 

This study investigates the factors that impact active commuters’ safety. A large GIS dataset was 

extracted for the City of Vancouver 134 traffic analysis zones (TAZs) including traffic exposure, 

socioeconomics, land use, built environment, and road facility. In addition, bike and sidewalk network 

indicators such as connectivity, continuity, slope, and length, were quantified using graph theory. 

Negative binomial generalized linear modeling is used to develop macro-level collision prediction 

models (CPMs) for pedestrian crashes as well as for cyclist crashes. The CPMs are used to capture the 

associations between the aforementioned TAZs’ attributes and cyclists’ and pedestrians’ safety.   

The results revealed the significant, and almost similar, impact of zone characteristics on cyclist 

crashes and pedestrian crashes. Recreational area density, residential area density, proportion of local 

roads, off-street bike paths, network continuity, network length, and network slope were all found 

negatively associated with active commuters’ crashes; on the contrary of employment density, 

household density, signal density, bus stop density, arterial-collector roads proportion, and network’s 

connectivity variables that were found positively associated with active commuters’ crashes. This 

indicates that any suggested policies for increasing the number of active commuters should be 

accompanied by risk actions. It also implies the important role that the quality of active transportation 

network, the built environment, the street network, and the land use can play in improving active 

commuters’ safety.  
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1. Introduction 

Many cities worldwide are recognizing the important role that active transportation can play in 

creating safer, sustainable, and livable communities. Active transportation has been known for its 

various advantages such as reducing the congestion and the associated emissions as well as increasing 

the physical activity levels which would result in various heath benefits (De Hartog et al., 2010). This 

motivates the cities’ authorities to apply various policies that would promote such trend of 

transportation. However, active commuters are vulnerable road users and their safety is always at risk. 

They are usually subjected to an elevated level of injury risk and discomfort, which may discourage 

them from using these active modes. Locally, the cyclists and pedestrians in the City of Vancouver 

accounted for approximately 3% of the reported crashes between years 2007 and 2012; nevertheless, 

they represented a large portion (approximately 50%) of the fatalities over the same period according 

to the insurance company of British Columbia (ICBC) statistics.  

According to the aforementioned, there is a growing need for advocating proactive planning strategies 

and viable decision support tools that are capable of assessing active transportation safety planning 

policies. Macro-level CPMs are statistical models that can play such role suitably. In macro-level 

CPMs, crashes (in this study cyclist/pedestrian crashes) are modeled as a function of wide area (e.g. 

neighborhood, traffic analysis zone, etc.) characteristics. 

This study investigates five years of pedestrian-motorist crashes and cyclist-motorist crashes at 134 

traffic analysis zones (TAZs) in the City of Vancouver. Generalized linear modeling (GLM) is used to 

develop the macro-level CPMs that are capable of evaluating the pedestrian and cyclist safety. Traffic 

exposure data including vehicle kilometers travelled, bike kilometers travelled, and walking trips are 

collected for each TAZ. In addition, a large dataset of geographical information system (GIS) data 

regarding socioeconomics, land use, built environment, road facility is compiled. Also, graph theory is 

used to quantify several bike and sidewalk networks’ indicators such as connectivity, continuity, slope, 

and length. The CPMs are developed using the aforementioned data in order to find associations 

between those various zone characteristics and active transportation safety. 

 

2. Literature Review 

2.1. Safety Models for Cyclists  

In the last few years, several studies had discussed the relationship between cyclist crashes and various 

explanatory variables.  In terms of socio-demographic variables, Chen (2015) showed that the 

increased employment density and household density were associated with a decline in collisions’ 

frequency. Siddiqui et al. (2012) showed that the numbers of population and employment, along with 

the median household income, were positively related to the cyclist crash frequency.  

Among traffic control variables, low-speed streets were found negatively associated with the number 

of cyclist crashes, while on contrary, high-speed streets had an increased number of cyclist crashes 

(Siddiqui et al., 2012). Additionally, high traffic signal density was found positively associated with 

the cyclist crashes in a TAZ (Wei and Lovegrove, 2013); (Chen, 2015).  

As for travel demand variables, Jacobsen (2003) examined the relationship between the number of 

vulnerable road users (pedestrians and cyclists) and their collisions with motor vehicles based on five 

data sets from different locations worldwide. Results showed that, at the population level, the number 

of motorists colliding with vulnerable road users would increase at approximately 0.4 power of the 

number of people cycling or walking. Taking into account the amount of walking and cycling, the 

collision probability would decline with about -0.6 power of that number. Robinson (2005) studied 

three datasets from Australia, and concluded similar results to Jacobsen's study. Other studies found 

out that the increase in bike volumes (Miranda-Moreno et al., 2011); (Strauss et al., 2013) and vehicle 

volumes (Hamann and Peek-Asa, 2013) had positive associations with the cyclist crash frequency. 

Prato et al. (2015) showed that the association between the bike or vehicle volumes and the cyclist-

motorist collisions was positive but non-linear.  
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Regarding land use, the increased commercial land use was positively associated with the cyclists’ 

crash frequency and injury (Narayanamoorthy et al., 2013); (Vandenbulcke et al., 2014). Also, Amoh-

Gyimah (2016) found out that the increase in the percentage of the residential area, the percentage of 

the industrial area, and the land use balance mix was positively associated with the cyclist-motorist 

collisions.  

As for networks’ features, increased intersection density was found to be positively associated with 

cyclist crashes (Siddiqui et al., 2012); (Strauss et al., 2013); (Wei and Lovegrove, 2013). Moreover, 

bike collisions frequency was found to increase as the intersection’s complexity got higher 

(Vandenbulcke et al., 2014). For different types of bike facilities, the off-road bike lanes were found 

safer than the on-road ones (Hamann and Peek-Asa, 2013); (Reynolds et al., 2009); (Teschke et al., 

2012). Chen et al. (2012) also showed that the installation of bike lanes did not lead to additional 

crashes, but a possible increase in the number of cyclists instead. On the contrary, more vehicles’ lanes 

were found positively associated with the cyclist crashes. In terms of street elements, a higher bus stop 

density was associated with an increased cyclist-motorist crash frequency (Strauss et al., 2013); (Wei 

and Lovegrove, 2013).  

2.2. Safety Models for Pedestrians  

Few studies have been published on the relationship between pedestrian crashes and different 

correlates. Lee and Abdel-Aty (2015) studied the pedestrian crashes over a 4 year period at a set of 

intersections in Florida. Using log-linear models, they found out that the road geometry, traffic and 

environmental conditions, and demographic factors are associated with the frequency and severity of 

pedestrian crashes.  

Wang and Kockelman (2013) used a modeled value for the walk miles travelled as an exposure 

variable to prove the positive association between the pedestrian crash risk and a higher mixing of 

commercial and residential land uses. They also proved a negative association between the sidewalk 

provision and lower crash risk.  

Siddiqui et al. (2012) developed macro-level CPM for pedestrian crashes and found out significant 

association between pedestrian crashes and the number of intersections, length of roads with posted 

speed limit of 35 kph, population, employment, the number of dwelling units, the number of hotel 

units, and long-term parking cost.  

Miranda-Moreno et al. (2011) studied the link between built environment, including land use types, 

road network connectivity, transit supply, and demographic characteristics, on pedestrian activity and 

pedestrian-motorist crashes. They found out that strategies that increase densification, mix of land use, 

and transit supply will increase pedestrian activity and may indirectly, increase the total number of 

injured pedestrians.  

Lastly, Kim et al. (2010) investigated the association between different types of collisions (total 

injury/injury/fatal and pedestrian/cyclist) and demographic, land use, and roadway accessibility in 

Honolulu, USA. They found out that the number of bus stops, number of intersections, number of 

people living below poverty level, and number of jobs are all associated with pedestrian crashes. 

2.3. Graph theory  

Graph theory concepts originated from the solution of the “Seven Bridges of Konigsberg” problem, 

which was done by Euler in the 18
th
 century. Graph theory can provide techniques for evaluating 

network quality and measuring its impact on travel behavior. Garrison and Marble (1962) were the 

first to introduce graph theory principles to transportation geography. Kansky (1963) presented indices 

that characterized network connectivity and complexity.  

More recently, Gattuso and Mirello (2005) were able to evaluate the topology and geography of metro 

networks in some European cities and New York City based on graph indicators. Quintero et al. (2014) 

introduced a novel approach to redraw transit networks as graphs, and hence they were able to include 
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new connectivity indicators. Those indicators were used in developing macro-level CPMs to assess the 

safety of Metro Vancouver transit network (Quintero et al., 2013). In addition, graph theory measures 

had been applied to the field of transportation planning in several other studies (Xie and Levinson 

2007; Derrible and Kennedy 2009; Rodrigue et al. 2009; Berrigan et al., 2010).  

2.4. Contribution to the Literature 

This paper presents several contributions to the literature as follow: 

 The GIS data collected for this study and the suggested safety correlates are far more 

comprehensive than the previous studies that attempted to study cyclist or pedesterian safety. 

 Real active commuting exposure measures, i.e. bike kilometers travelled and walk trips, are 

incorporated in the cyclist and pedesterian CPMs for the first time. 

 This paper is the first to investigate the association between bike and sidewalk network 

indicators, quantified using  graph theory, and active commuters’ safety. 

 

3. Data Collection 

3.1 Data Sources 

Zone-level CPMs are developed in this study based on 134 TAZs in the city of Vancouver. 

Explanatory variables that are related to network and zone characteristics are included in the CPMs. 

Walk trips, bike kilometer travelled, and vehicle kilometers travelled are incorporated in the models as 

exposure variables. The data needed for the explanatory variables is compiled using ArcGIS software, 

for processing and visual representation, after being extracted from five main sources: 

1. Insurance Corporation of British Columbia, a public automobile insurance company, provided the 

crash data for a 5 years period (2009-2013). Only pedestrian-motorist and cyclist-motorist crashes are 

included in the analysis, as shown in Figure1. A 5 years period is selected to collect an adequate 

sample size. The sample included 3 severity levels, i.e. fatality, injury, and property damage only. 

However, the total number of crashes is included in the analysis in order not to disperse the sample 

size. The reported crash data may have some limitations such as unreported crashes due to low severity 

and absence of records for cyclist-pedestrian crashes.  

2. Translink, the Metro Vancouver transportation authority, provided the geocoded files for the city of 

Vancouver road network, sidewalk network, bike network, land use, and TAZ boundaries. Moreover, 

Translink provided the output of an Emme2 transportation planning model for the travel demand in 

Metro Vancouver in year 2011. Translink used the 2011 household travel survey to calibrate the 

model, and the 2011 cordon counts to validate the model assignments. 

3. Acuere Analytics provided the Vancouver Cycling Data Model (VCDM 2011). The VCDM used 

the bike count occurred between years 2005 and 2011 to estimate the annual average daily bike traffic 

(AADB) over the city of Vancouver bike network (El Esawey et al., 2015). The available data covered 

more than 810,000 hourly volumes over seven years. The model was efficient in estimating the AADB 

on most of the bike network links (3180 links, or more than 70% of the network).  

4. The open data catalogue of the City of Vancouver (http://vancouver.ca/your-government/open-data-

catalogue.aspx) provided the city built environment data (i.e. transit stops, traffic signals, and light 

poles). 

5. Census Canada provided the socio-economic data (i.e. employment and household data) of the City 

of Vancouver according to 2011 census. 

http://vancouver.ca/your-government/open-data-catalogue.aspx
http://vancouver.ca/your-government/open-data-catalogue.aspx
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Figure 1 Heat Map of Cyclist Crashes (Red Points) and Pedestrian Crashes (Yellow Points) at 

City of Vancouver TAZs 

3.2 Data Variables 

The variables included in the analysis are divided into eight main categories; crashes, exposure, socio-

economic, land use, built environment, road facility, cycling network, and pedestrian network. Table 1 

provides the definitions and the descriptive statistics of the variables. The aggregation process of the 

different variables, at the zone level, is done using the ArcGIS software as discussed below. 

Cyclist-motorist and pedestrian-motorist crashes are aggregated at the different TAZs according to 

their geospatial locations. Boundary crashes are distributed between the adjacent TAZs according to 

the relative proportion of BKT or W (depending on the type on the model, cyclist collisions model or 

pedestrian collisions model) at these zones. This way of distribution is selected due to the direct 

association between traffic exposure and both and crash risk, as revealed by the models developed in 

this study and several previous studies (Prato et al., 2016), (Strauss et al., 2013), (Miranda-Mreno et 

al., 2011). 

Three exposure measures are used in this study, i.e. BKT and VKT for cyclist CPMs, and W and VKT 

variables for pedestrian CPMs. Vancouver cycling data model provided the bike trip counts on the city 

of Vancouver road segments (El Esawey et al., 2015). A link based method is then used to calculate 

the zonal BKT. The road segments are represented by links, and the trip count at each link is 

multiplied by the link length to obtain the link BKT that is then aggregated to obtain the total BKT at 

each TAZ. As for the VKT and W variables, the data were readily provided by the Emme2 model on 

the TAZ level. 

The socio-economic variables (i.e. employment, and household) were already provided by the Emme2 

model in a TAZ aggregated form, and are then divided by the corresponding TAZ area to compute 

their densities. 

The freeway, arterial, collector, and local roads are represented as links, and their link lengths are 

aggregated at each TAZ. The aggregation of each road class is then divided by the road network total 

length to determine the proportion of each class of the total road network. As well, the total length of 

the off-street bike links is aggregated at each TAZ, and then divided by the total road network length 

to determine its proportion.  
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For the land use variables, the areas of the commercial, residential, and recreational zonings are 

aggregated at the different TAZs, and then divided by the corresponding TAZ area to obtain the 

density of each zoning type.  

For built environment indicators, the number of traffic signals and bus stops are also aggregated at 

each TAZ, and then divided by the corresponding TAZ area to obtain their densities. Figure 2 shows 

the distribution of the traffic signal and bus stop densities among the city of Vancouver TAZs. 

 

 
(a)                                                                                         (b) 

Figure 2 (a) Traffic Signal Density and (b) Bus Stop Density at City of Vancouver TAZs 
 

In addition to the aforementioned variables, more variables can be obtained using graph theory for 

both the bike and the sidewalk networks. The first step is to characterize the bike and sidewalk 

networks as graphs (i.e. sets of links and nodes) in order to collect the basic measurements of the graph 

characterization (e.g. number of nodes, number of links, length of links, etc.). The links represent the 

network infrastructure (i.e. bike lanes, sidewalks, etc.), and the nodes represent the intersections 

between the links. Since a zonal level of aggregation is selected, a technique is developed for splitting 

the entire network among the smaller zones. The links and nodes are distributed between the different 

TAZs according to their geospatial location. However, if a link is found to pass through two zones, 

then it is divided between the two adjacent zones using a weight that is relative to the link’s length 

within each zone. 

 

 
 (a) (b) 

                  Figure 3 Sidewalk (a) and Bike (b) Networks Characterizations at the different TAZs 
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Using graph representation, several indicators can be estimated as follow: 

Degree of connectivity represents the ratio between the actual number of network (bike or sidewalk) 

links in the TAZ and the maximum possible number of links in the TAZ. Assuming a planar graph, the 

maximum possible number of links within a graph is calculated according to equation 1 (Garrison and 

Marble, 1962), where n is the number of nodes within a graph. 

lmax = 3 (n-2)                                                                                             (1) 

The value of the degree of connectivity is bounded between 0 and 1. A completely connected network 

will have a degree of connectivity equal to 1, while a completely disconnected network will have a 

degree of connectivity equal to 0.  The degree of connectivity indicator has been used in previous 

studies for evaluating transit networks (Derrible and Kennedy, 2011); (Quintero et al., 2013).   

As for network continuity, Scheltema (2012) previously proposed manual methodologies by counting 

every crossing along the key bike routes to characterize continuity. Nevertheless, such methodology is 

inconvenient for macro level studies as it consumes considerable time and effort.  Therefore, a new 

way to calculate continuity needs to be applied in the context of macro-level studies. Average edge 

length can characterize the continuity of the transportation network since it explicitly represents the 

average length of the network link that is free from interruptions. Average edge length is calculated as 

the ratio between the total length of the zonal network and the total number of links in the 

corresponding TAZ (Kansky, 1963).   

Lastly, the total length of the network (bike/sidewalk) links and the average weighted slope of the 

network links are evaluated. The total length of the zonal network represents the explicit size of the 

network infrastructure (sidewalks, bike lanes, etc.) within a TAZ. The average weighted slope of the 

zonal network gives an indication of the average steepness of the bike/sidewalk network within each 

zone. The total length of the bike/sidewalk network is calculated by aggregating all the network links 

within each TAZ. The zonal average weighted slope of the network is calculated according to the 

following steps. First, the links’ slopes are computed (assuming absolute values) using the contour 

map of the city of Vancouver and then the slope at each link is given a weight relative to its length. 

Afterward, the average weighted slope of the links is calculated for each TAZ using equation 2; where 

l represents the link length and s represent the link’s slope. 

                              
∑      
 
                 

∑            
 
 

                         (2) 
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Table 1 Variables Definition and Data Summary (n=134 TAZs) 

Variable Description Mean SD Min Max 

Crashes      

CColl Cyclist-Motorist Crashes over 5 Years 12.71 13.48 0 78 

PColl 
Pedestrian-Motorist Crashes over 5 

Years 

15.45 11.45 0 54 

Exposure      

VKT Vehicle Kilometer Travelled 4290.43 3315.10 189.46 22288.79 

BKT Bike Kilometer Travelled 1047.78 2102.07 0 21462.77 

W Walk Trips  3971.64 2677.49 247.11 13906.56 

Socio-

Economic 
     

EmpD Employment Density 

(Employment/Zone Area) 12236.26 26399.07 84.54 170910 

HhsD Household Density (Households/Zone 

Area) 416.52 436.35 0 2141.88 

Land Use      

ResD 
Residential Density (Residential 

Areas/Zone Area) 
0.34 0.20 0 0.67 

CommD 
Commercial Density (Commercial 

Areas/Zone Area) 
0.08 0.11 0 0.58 

RecD 
Recreational Density (Recreational 

Areas/Zone Area) 
0.10 0.13 0 0.91 

Built 

Environment 
     

SigD 
Signal Density (Number of 

Signals/Zone Area) 
14.26 18.43 0 110.55 

StopD 
Transit Stops Density (Number of 

Stops/Zone Area) 
24.28 23.62 0 162.24 

Road Facility      

ArtColl_Prop Arterial-Collector Roads Proportion 

(Arterial + Collector Roads Length/ 

Road network Length) 

0.35 0.21 0.12 1 

Loc_Prop Local Roads Proportion (Local Roads 

Length/Road Network Length) 

0.64 0.21 0 0.87 

OffSt_Prop Proportion of Off-Street Bike Links 

(Total Length of Off-Street Bike Links/ 

Road Network Length) 

0.00014 7.51x10
-

5 

0 0.0009 

Bike Network      

CConn Degree of Bike Network Connectivity 0.38 0.11 0 1 

CAvgEdLen Bike Network Average Edge Length 0.13 0.05 0 0.57 

CSlope Avg. Weighted Slope for Bike Network 2.52 0.90 0.63 6.65 

CLen Total Length of Bike Network Links 3.37 2.52 0 17.40 

Pedestrian 

Network 
     

PConn Sidewalk Network Connectivity 0.47 0.058 0.32 0.70 

PAvgEdLen Sidewalk Network Avg. Edge Length 109.18 23.45 57.90 242.43 

PSlope 
Avg. Weighted Slope of the Sidewalk 

Network 

3.01 1.77 0.53 14.76 

PLen Total Length of  Sidewalk Network  12 8.78 0.95 54.30 
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4. Methodology 

The macro-level CPMs developed in this study use the generalized linear modeling (GLM) approach 

to investigate the impact the zones’ attributes on crash frequency. GLM approach, which assumes a 

non-normal distribution error structure, is widely used as a state of practice for the development of 

CPMs since conventional linear regression models lack the distributional property to adequately 

describe collisions. This inadequacy is due to the random, discrete, nonnegative, and typically sporadic 

nature that characterizes the occurrence of collisions (Miaou and Lum, 1993; Sawalha and Sayed, 

2006 and 2001). A Negative Binomial error distribution assumption has become the standard for 

CPMs developed using the GLM approach (Hauer et al., 1988); (Sawalha and Sayed, 2001). The 

model form used for CPMs should generally satisfy two conditions (Sawalah and Sayed, 2006). First it 

should not yield negative results in terms of predicting negative collisions and also should predict zero 

collisions for zero traffic exposure (when there are no vehicles or bikes on the road). As well, there 

need to be a link function to transform the model into a linear form. Based on empirical studies (Miaou 

and Lum, 1993); (Sawalha and Sayed, 2001), a commonly used model form includes an exposure 

measure (e.g. vehicle kilometers traveled) raised to some power and multiplied by an exponential 

function including the other non-exposure explanatory variables. The model can be expressed 

mathematically as shown in equation 3. 

E(Y) =a0 V
a1

V
a2

exp(Σbjxj)                                                                                 (3) 

Where E(Y) is the predicted collision frequency, V is the measure of the traffic volume (VKT with 

BKT for cyclist CPMs and VKT with W for pedestrian CPMs), xj represents any other explanatory 

variables, and a0, a1, a2, and bj are the model parameters. The recommended statistical methodology to 

add explanatory variables into a CPM is a forward stepwise procedure (Sawalha and Sayed, 2001). 

Variables are added one by one, and their significance is tested. Variables representing exposure must 

be included first.  

Two statistical measures are used to assess the goodness of fit of the GLM models, including Pearson 

chi-square (χ
2
) and scaled deviance (SD) statistics. For a well-fitted model and a relatively large 

number of observations, the expected value of Pearson χ
2
 and SD will be approximately equal to the 

number of degrees of freedom (Sawalha and Sayed, 2001).  Both Pearson χ
2
 and SD are shown in 

equations 4 and 4 respectively, where yi is the frequency of collisions, Var(yi) is the variance of the 

frequency of collisions, E(Λi) is the expected frequency of collisions, and κ is the dispersion 

parameter.   The SAS software is used develop the CPMs, undergo the significance tests for the 

explanatory variables, and assess the developed models’ goodness of fit. 

 

Pearson χ
2
 =∑ni [yi−E(Λi)]

2
/(Var(yi))                                                    (4) 

SD=2∑ni [yiln(yi/E(Λi))−(yi+κ)ln((yi+κ)/(E(Λi)+κ))]                            (5) 

 

 

5. Analysis and Results 

The developed CPMs use both VKT and BKT as main exposure variables for cyclist CPMs and VKT 

and W as main exposure variables for pedestrian CPMs. Tables 2 and 3 show the developed models 

for the active transportation safety correlates as discussed below. 

Cyclist/pedestrian crash frequency is found non-linearly positively associated with the respective types 

of traffic exposure. The exponents of the traffic exposure variables are less than one, which support the 

“safety in numbers” hypothesis (Jacobsen, 2003). These results are intuitive and consistent with 

several previous studies (Prato et al., 2016), (Amoh-Gyimah et al., 2016).  

5.1 Socio-Economic Models 
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Socio-economic CPMs are primarily based on the explanatory variables extracted from census data. 

The models reveal positive associations between the cyclist/pedestrian crashes on the one hand and the 

employment density and household density on the other hand. The results are reasonable since the 

aforementioned variables can be considered surrogate measures for traffic exposure, thereby 

explaining their positive associations with active commuters’ crashes. These results are in agreement 

with previous studies by Siddiqui et al. (2012), (Cai et al., 2016) and Prato et al. (2016).  

5.2 Land Use Models 

The models in this category incorporate explanatory variables that refer to land zonings within the 

TAZs. The results show that the increase in residential and recreational area densities is associated 

with the decline in the number of cyclist/pedestrian crashes. The result for the recreational areas is 

logical because these areas usually provide off-street and continuous paths for active transportation 

commuters reducing the conflict risk between these vulnerable commuters and vehicles. This result is 

consistent with a study by Ukkusuri et al. (2011), who found a negative association between parks 

total area and pedestrian crashes. The negative association between residential area density and active 

commuters’ crashes can be justified by the ongoing traffic calming measures applied by city of 

Vancouver to promote active transportation and limit motorized traffic at the residential 

neighborhoods (http://vancouver.ca/streets-transportation/traffic-calming-and-safety.aspx). This is 

done using speed humps, diverters, traffic circles, etc. to reduce the speed of the traffic and control its 

navigation within residential areas.  

On the other hand, the increase in commercial area density is found associated with an increase in the 

cyclist/pedestrian crashes. This can be attributed to the side street activities that raise the potential risk 

of a cyclist/pedestrian going into conflict with motorized traffic. The association between commercial 

areas and active commuters’ safety agrees with few previous studies (Narayanamoorthy et al., 2013), 

(Ukkusuri et al., 2011), (Vandenbulcke et al., 2014). 

5.3 Built Environment Models 

Built environment variables refer to the elements that are physically present on the road networks. The 

models show that cyclist/pedestrian crashes are positively associated with transit stop density and with 

traffic signal density, which agrees with previous studies by (Lee et al., 2015), Strauss et al. (2013) 

Siddiqui et al. (2012), Cai et al. (2016), and Wei and Lovegrove (2013). More traffic signals imply the 

presence of more wide intersections that usually include complex vehicle and active commuter 

maneuvers elevating the probability of crash occurrence. On the other hand, the presence of bus stops 

indicates the occurrence of interactions between buses, vehicles, and active commuters, which is also 

speculated to increase active commuters’ crash risk. 

5.4 Road Facility Models 

For this category, a higher proportion of arterial plus collector roads is found positively associated 

with cyclist crashes as well as pedestrian crashes. This can be explained by the higher speeds and the 

heavier traffic on these types of roads, which would increase the risk of conflict occurrence between 

active commuters and vehicles. On the other hand, a decline in cyclist-motorist and pedestrian-

motorist crash frequency is found associated with higher proportion of local roads. A likely reason for 

such negative association is the relatively low speeds on the local roads, which would result in an 

increase in the drivers’ attentiveness and, therefore, reduce conflicts’ potential. The former results 

agree with previous studies conducted by Chen (2015), Wang and Kockelman, (2013) and Siddiqui et 

al. (2012). The proportion of the off-street bike links is found negatively associated with cyclist 

crashes. This result is reasonable and agrees with several previous studies suggesting that separating 

bike traffic from motorized traffic would likely improve cyclist safety (Reynolds et al., 2009). 

5.5 Network Models 
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The CPMs show that there is a positive association between the active commuters’ crashes and the 

connectivity measure (i.e. Conn). The degree of connectivity is related to the number of network links 

and network configuration. The bike network connectivity is found to be positively associated with 

cyclist crashes, while sidewalk connectivity is positively associated with pedestrian crashes. This is 

likely due to the fact that more links between the nodes would lead to higher exposure to cyclist-

motorist and pedestrian-motorist conflicts, and consequently higher collision potential. On the 

contrary, the average edge length variable is found to have a negative association with active 

commuters’ crashes, while the average length per vertex is found to be statistically non-significant. 

These results imply that a higher average edge length, which indicates longer links without hindrances 

or discontinuities, is presumably more convenient and safer to the active commuters. Similar results 

were found for transit networks, where the degree of connectivity was found positively associated with 

crash frequency, on the contrary of the average edge length that was negatively associated (Quintero et 

al., 2013). 

The zonal length of the bike network and sidewalk network is found negatively associated with the 

cyclist-motorist collisions and pedestrian-motorist collisions respectively. This agrees with recent 

studies that concluded that more bike infrastructure would increase cyclist safety (de Rome et al., 

2014) (Prato et al., 2015), and that more pedestrian infrastructure would increase pedestrian safety 

(Yu, 2015), on the contrary of a study by Cai et al. (2016), who used sidewalk length as a traffic 

exposure for pedestrians. Also, a negative association is found between the weighted slope of the zonal 

bike network and the weighted slope of the zonal sidewalk network and cyclist crashes and pedestrian 

crashes respectively. This may be explained as cyclists and vehicles usually reduce their speeds at 

climbing slopes, which would lower crash risk. This result is consistent with a study by Chen (2015), 

who used a zonal mean slope variable to represent the average absolute slopes of the TAZs and found 

a non-significant negative association with cyclist crashes; as well as a study by Chen and Zhou 

(2016), in which they found out that the proportion of steep areas within zones was negatively 

associated with pedestrian crashes.  
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Table 2 GLM Results for Cyclist Crashes 

 

 

 

 

 

 

 

 

 

 

 

 

Model Cyclist Collisions = K df SD X
2
 

     

Socio-Economic Models     

 0.004BKT
0.58

VKT
0.48

exp(8.09x10
-6

EmpD+5.52x10
-5

HhsD )
 

2.85 128 120.05 141.53 

     

Land Use Models     

0.016BKT
0.57

VKT
0.33

exp(1.83 CommD) 2.64 129 111.57 142.25 

0.051BKT
0.61

VKT
0.23

exp(-0.56ResD*-2.38RecD) 3.01 128 125.79 144.20 

     

Built Environment Models     

0.010BKT
0.54

VKT
0.38

exp(0.015SigD) 3.03 129 120.79 142.44 

0.012BKT
0.58

VKT
0.33

exp(0.010StopD) 2.77 129 115.04 141.49 

     

Road Facility Models     

0.037  BKT
0.57

VKT
0.31

exp (-0.74Loc_Prop) 2.56 129 117.31 142.61 

0.023 BKT
0.64

VKT
0.21

exp (1.17ArtColl_Prop-1884OffSt_Prop) 2.94 128 133.09 144.56 

     

Bike Network Models     

0.020 BKT
0.61

VKT
0.31

exp(-0.063CLen) 2.50 129 121.32 143.07 

0.032BKT
0.60

 VKT
0.26

exp(1.64CConn-3.58 CAvgEdLen-0.17CSlope) 2.70 127 117.27 140.37 

     

     

*Significant at the 10% level. 

All other parameters are significant at the 5% level or higher 

 

K: Over-dispersion parameter          df: degrees of freedom         X
2
: Pearson chi square

 
         

SD: Scaled Deviance 
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Table 3 GLM Results for Pedestrian Crashes 

*Significant at the 10% level. 

All other parameters are significant at the 5% level or higher 

 

K: Overdispersion parameter          df: degrees of freedom         X
2
: Pearson chi-square

 
         SD: 

Scaled Deviance 

6. Conclusions 

This paper provides transportation engineers, planners, and policy makers with tools (CPMs) that can 

be used to improve active commuters’ safety. The study used large GIS data from city of Vancouver 

134 traffic analysis zones, to develop empirical macro-level CPMs incorporating variables related to 

traffic exposure, socioeconomics, land use, built environment, and road facility. In addition, bike and 

sidewalk network indicators were developed using graph theory. A GLM technique was used to build 

cyclist and pedestrian CPMs incorporating the various explanatory variables aforementioned. The 

cyclist CPMs were developed using VKT and BKT, while the pedestrian CPMs were developed using 

VKT and W. BKT and W represent the actual cyclist and pedestrian traffic exposure respectively 

unlike previous safety studies that used proxies for cycling and pedestrian exposure. Some findings in 

this study agreed with the results from former studies in the literature, though better exposure 

indicators and more comprehensive set of cyclist and pedestrian safety correlates were used in the 

current study. 

The CPMs’ results showed that the cyclist crashes and pedestrian crashes had almost similar 

associations with the studied zone characteristics. The cyclist/pedestrian crashes were non-linearly and 

positively associated with the traffic exposure variables. The exponents of the exposure measures were 

less than one supporting the “safety in numbers” hypothesis. The results also showed that the increase 

in the cyclist/pedestrian crashes was associated with the increase in the socio-economic attributes such 

as employment and household densities, and the built environment attributes such as transit stop and 

traffic signal densities. Regarding, land use, a positive association was found between 

Model Pedestrian Collisions= K df SD X
2
  

Socio-Economic Models 

0.0008W
0.61

VKT
0.54

exp(2.8x10
-5

HhsD*+0.56x10
-5

EmpD)
 

5.88 129 138.40 143.79    

Land Use Models 

0.0007W
0.69

VKT
0.47

exp(1.40CommD) 5.88 130 139.13 140.29  

0.0014W
0.70

VKT
0.45

exp (-1.07RecD-0.74ResD) 6.13 129 138.59 142.86  

Built Environment Models 

0.001W
0.64

VKT
0.49

exp (0.011SigD) 6.36 130 138.48 143.51  

0.0008W
0.68

VKT
0.47

exp (0.0079StopD) 5.95 130 137.95 140.54  

Road Facility Models 

0.0005W
0.72

VKT
0.47

exp (0.81Art_Coll) 6.09 130 138.76 144.98  

0.0012W
0.72

VKT
0.47

exp (-0.79Loc_Prop) 6.02 130 138.66 144.59  

Pedestrian Network Models      

0.31VKT
0.32

exp(2.55PConn) 2.38 131 143.63 153.48  

0.0014W
0.76

VKT
0.47

exp (-0.0091PAvgEdLen) 5.88 130 136.68 138.98  

0.0003W
0.73

VKT
0.65

exp(-0.035PLen-0.087PSlope) 7.46 129 135.55 138.69  
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cyclist/pedestrian crash frequency and commercial area density, while both residential and recreational 

areas’ densities had negative associations with the active commuters’ crashes. For road network 

facilities, higher cyclist/pedestrian crash frequency was found associated with more arterial and 

collector roads proportion, while a decline in those crashes was found associated with the increase in 

local roads proportion. Cyclist crashes were negatively associated with the off-street bike links 

proportion. Bike and sidewalk networks’ connectivity was found positively associated with cyclist and 

pedestrian crashes respectively, on the contrary of the networks’ continuity, slope, and length.  

Several recommendations can be suggested to improve active commuters’ safety based on this study 

as follow. It is obvious that it is not enough to just provide bike and sidewalk networks; rather, the 

quality of the network is an important factor. The length, connectivity, continuity, and the slope of the 

bike and pedestrian networks need to be prudently studied and addressed. In addition, the signalized 

and non-signalized intersections need to be treated according to complete streets acts (such as NACTO 

guides) to be friendlier and safer to the active commuters. Separated bus lanes, bike lanes, and 

walkways can also be good solutions for cyclist and pedestrian interactions with transit and vehicles. 

Moreover, mixed land use, that provides shorter commute distance for active commuters, can reduce 

the crash risks for those users. Lastly, a better hierarchy of the streets, that can reduce the dependence 

on high speed and high traffic volume roads, shall make active commuters more comfortable and 

safer. 

Some areas of further research can be also investigated. First, the transferability of the models needs to 

be validated by applying the developed CPMs to various cycling and walking environments. Also, the 

models can be used to detect hot zones for active transportation, and consequently provide remedies to 

elevate the safety of active commuters at these areas. Lastly, the association between the bikeability 

and walkability and the cyclist and pedestrian crashes can be an interesting topic for future research. 
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