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Abstract 

The passenger transportation sector is a notoriously difficult sector to decarbonize as it is so closely 

linked with individual choice and economic growth. There is a need in literature to evaluate the 

uncertainty associated with a set of GHG mitigation policy decisions while simultaneously optimizing the 

policy costs under a GHG emission constraint. Using policies which target travel behaviour change and 

emerging technology uptake, an interval pure integer quadratic optimization model is developed to 

minimize the associated policy action cost under the constraints of the 30% GHG reduction target for the 

Canadian province of Ontario. To achieve the short-term target GHG reduction, between 3% to 6% of the 

province’s annual budget must be spent every year from 2020 to 2030 in electric vehicle incentives, 

government fleet replacement, bus network expansion and bus fare subsidies. This optimization approach 

can be used to support passenger road transportation GHG reduction policy cost and target decision-

making at all levels of government.  
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1. Introduction 

In April 2016, alongside 175 other counties, Canada committed to reducing its greenhouse gas (GHG) 

emissions as part of the Paris Agreement which acknowledged the urgent need to address climate change 

(ECCC, 2019). Canada’s most recent Biennial Report submitted to the United Nations Framework 

Convention on Climate Change outlines the continued implementation of the national plan (the Pan-

Canadian Framework on Clean Growth and Climate Change also referred to as the Pan-Canadian 

Framework) and the estimated progress towards the 2030 target (30% below 2005 levels). The Pan-

Canadian Framework includes policy actions which focus on the reduction GHG emissions across all 

sectors; namely carbon pollution pricing strategy, complementary actions to reduce emissions, adaptive 

and resilience measures, and support for clean technology. Despite these measures, the most current GHG 

reduction projections, based on the impact of federal and individual provincial/territory climate change 

policies for each sub-sector and forecasted GDP and energy prices indicate that under the reference and 

best-case scenario, the emissions will decrease between 8% to 17% below 2005 levels respectively 

(ECCC, 2019).  

Canada has one of the cleanest energy systems in the world due to a high proportion of renewable 

electricity production and is also one of the largest consumers of energy per capita globally (Kennedy, 

2015). Reducing energy demand by switching to more energy efficient technology without significantly 

changing travel behaviour may be sufficient to meet short-term GHG reduction targets (J. D. Hughes, 

2018). However, transparency in the cost associated with the short-term policy implementation and a 

consistent target is a necessary first step to achieving GHG reduction targets.  

The aim of this model is to present a generalized and interpretable passenger road transportation sub-

sector model which minimizes the policy cost associated with a change from 2020 to 2030 vehicle fleet 

emissions under a GHG reduction target. Through a case study of Ontario, the most populous province in 

Canada, an interval pure-integer linear model is developed to minimize policy costs under a quadratic 

30% GHG reduction constraint and linear vehicle sales and replacement constraints. Four federal policies 

are considered in the reference case as they have or will be implemented in the ten-year period at no cost 

to the province, and four hypothetical provincial policies are considered. All provincial policies 

encourage a reduction in the GHG emissions produced by the vehicle fleet; namely through electric 

vehicle (EV) point-of-purchase incentives which result in the purchase of an EV in lieu of a conventional 

new gasoline vehicle, the purchase of EVs to replace aging government fleet vehicles (light-duty vehicles 

(LDV) and transit buses (Bus)), and the addition of new buses and reduction in bus-fare which reduces 

the number of LDV by improving the public transportation network.  

The passenger road transportation sector in Ontario is a well suited case study, as to the author’s 

knowledge, the provincial and federal GHG reduction forecasts do not capture all the opportunity for 

GHG reduction potential (ECCC, 2019). The GHG reduction forecast in the most recent Biennial Report 

falls short in accounting: 1) the full life-cycle (LC) emissions (which capture the full extent of emissions), 

2) modal shift as a result of transit investment is neglected (the removal of 1 new passenger vehicle sale 

and shifting those trips to transit can have a significant impact on emission reductions (Boisjoly et al., 

2018)), and 3) the uncertainty associated with policy expenses. This study aims to address these shortfalls 

by including the associated costs and deterministic LC GHG emissions in the model and incorporating 

interval programming techniques to address some of the uncertainties directly associated with policy cost. 

Through best-worst case scenario analysis, three solutions are generated, one representing the do-nothing 

provincial policy (just federal action), the two representing an optimistic and pessimistic 2030 EV 

scenarios. The scenarios are based on different new EV sales targets and varying total-cost-of ownership 

(TCO). To the author’s knowledge, this is the first study which applies optimization techniques to both 
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modes of passenger transportation (private vehicle and public transit) with the aim of optimizing 

expenditure related to GHG reduction policy.     

The paper is organized in the following sections. Section 2 summarizes relevant literature pertaining 

to optimization methods applied to GHG reduction in energy systems and policy decision making, 

Section 3 outlines the data used, the associated assumptions, and the developed scenarios. Section 4 

presents the results of each scenario as well as the sensitivity analysis of the EV sales constraint. 

Discussion of the results is presented in Section 5, along with comparisons to recent literature, and 

implications on policy making. Section 6 concludes and summarizes the key contributions for policy-

makers as well as outlines room for future considerations. 

2. Literature Review 

GHG emission mitigation is paired with energy system planning, as both energy-intensive end-use 

sectors must increase their energy efficiency (as simply a reduction in energy-use signifies a decrease in 

industrial economic activity) and the region’s energy systems must become less carbon-intensive (L. 

Hughes et al., 2020). A less carbon-intensive energy grid has the additional benefit of supporting energy-

efficient indirect economic activity as seen in the electrification of passenger transportation. Optimization 

approaches have been used in literature to address uncertainties and incurred as a result of economic, 

technical, environmental, and political factors at different scales to help inform decision-making 

processes. The following four subsections discuss deterministic, inexact (interval, stochastic, fuzzy-set, 

and dynamic), and model-based decision support tools in the optimization of GHG mitigation, energy 

system planning, and associated policy costs.  

2.1. Deterministic optimization approaches  

Deterministic models have been widely used to support optimum allocation of energy resources 

under administrative objectives. (Mustapa & Bekhet, 2016) developed a short-term linear programming 

optimization model for the Malaysian transportation sector which estimated the composition of the 

vehicle fleet to minimize the GHG emissions under fuel price and travel demand constraints. It 

demonstrated that the removal of existing fuel price subsidies would encourage the uptake of enough fuel-

efficient vehicles to enable Malaysia to reach its national 2020 GHG reduction target. (Hashim et al., 

2005) developed a mixed-integer linear programming model which optimized the extent of fuel balancing 

and fuel switching which would minimize the GHG emissions produced by Ontario fossil-fuel electricity 

generation plants under cost, production, supply, operational, and capacity constraints. (Sen et al., 2019) 

developed a Pareto optimal modeling approach to determine the optimal fleet mix of heavy-duty-trucks 

(electric, hybrid, and/or fossil-fuel/bio fuel) in five U.S. economic sectors based on their life-cycle 

environmental, economic, and social impacts. The model results showed that the 30% reduction target is 

infeasible under existing techno-economic circumstances but in the future may be possible with 

reductions in energy-system carbon intensity.  

2.2. Inexact optimization approaches 

While deterministic models have higher interpretability, they do not reflect the uncertainties in 

associated with GHG mitigation, energy system planning, and associated policy cost. Inexact 

optimization approaches model the parameters and/or coefficients in objective functions and constraints 

as non-deterministic, namely through a combination of stochastic, fuzzy, and/or interval-based 

approaches.  

The stochastic approaches are appropriate when decisions parameters can be expressed as probability 

(chance-constrained) and/or there are multiple stages where the decision made in the previous stage 

impacts the possible decision in the current stage. For instance, (Karan et al., 2016) implements a 
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stochastic optimization model to generate the optimal EV specification and power generation capacity of 

a solar system such that GHG emissions are minimized under a budget constraint. Probability 

distributions based on historic and forecasted EV specifications and power generation capacity of a solar 

system inform the model.  (Cristóbal et al., 2013) proposed a two-stage stochastic mixed-integer linear 

programming approach to generate the optimal investment timing and operation of CO2 capture system 

under the uncertainty of the CO2 allowance price in the EU cap-and-trade framework. Both studies use 

stochastic optimization to address uncertainty in their decision variable and/or constraint parameters.  

When precise data is not available and can vary, fuzziness of the uncertainty is modelled and 

integrated into the parameters of the objective and/or constraints of the optimization model 

(Rommelfanger, 1996). An application is within life-cycle (LC) assessment, where (Tan et al., 2008, 

2009) integrates a fuzzy approach in an input-output based LC model to estimate the optimal bioenergy 

system configuration under the Philippine’s national flexible targets on land use, water, and GHG 

emissions. Another application is in the extension of calibrated energy systems models, as (Martinsen & 

Krey, 2008) forecasts the energy system based on the IKARUS energy systems model, a time-step 

dynamic linear optimization model calibrated to Germany’s primary energy supply to energy services. 

The study then implements fuzzy constraints which represent the contradictory political targets (e.g. % 

CO2 reduction target, % energy imports, share of renewable electricity, amount of domestic coal, etc) and 

determine the fuzzy optimal total primary energy supply, CO2 emissions, and final energy for each time 

step.  

When upper and lower bound solutions are appropriate, the interval approach is applied to derive 

optimistic and pessimistic solutions (Zeng et al., 2011).  (Chen et al., 2018) formulates a dynamic interval 

chance-constrained programming model for the Yukon Territory to estimate the optimal energy system 

under different policy scenarios with different system costs, GHG emission controls, and renewable 

energy.  

As an extension of previous efforts on the topic of energy planning, GHG mitigation, and policy cost 

minimization, this study aims to develop an interval pure-integer quadratic optimization model to estimate 

the policy cost associated with meeting a GHG reduction target. The model is applied to Ontario’s 

passenger transportation sub-sector and assesses various policy alternatives which take into account 

emerging technology policies as well as policies which target modal shift from passenger vehicles to 

transit. To the author’s knowledge, optimization approaches have not need been applied within this 

context and this study offers a novel contribution to the literature.  
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3. Methodology 

3.1. Data Sources  

The scope of this model is limited to road passenger transportation technology and four policy 

actions which Ontario can feasibly implement between 2020 to 2030 to meet the 2030 GHG emissions 

reduction target at a minimized cost. The four provincial policies target converting the number and 

proportion of privately owned and publicly owned vehicles to more GHG-efficient options. The vehicles 

types considered are light-duty passenger vehicles (LDV) and transit buses (Bus), as they represent the 

majority of passenger vehicles on the road (ECCC, 2017). The three considered vehicle powertrains 

reflect dominant and emerging powertrain technologies and energy sources, namely the conventional 

option (gasoline for LDV (G.LDV) and diesel for Bus (D.Bus)), reduced emission option (plug-in hybrid 

electric vehicle (PHEV) for LD), and emerging power sources (battery electric for LDV (BEV) and Bus 

(BEB)). Four federal policies are also considered as they are planned or ongoing during the ten-year time 

period (ECCC, 2019) but are of no cost to the province. Both provincial and federal policies are listed in 

Table 1. 

 The provincial policies are as follows; First, EV incentive, which is an indirect financial action 

encouraging the up-take of clean technology by financially encouraging a shift in consumer purchase 

behaviour. Second, retire conventional vehicles and replace with BEV and BEB, a direct financial action 

which also encourages the up-take of clean technology but through a different path – through directly 

replacing less emission efficient vehicles with more emission-efficient vehicles. Third, adding additional 

BEB to bus networks, and fourth, subsidization of user-end bus fare, both policies are direct financial 

action which encourage a change in travel behaviour and a reduction of light-duty vehicles on road, 

namely through improving bus service, coverage, and reducing cost-to-ride.  

Table 1: Provincial policies, costs, and GHG reduction outcomes and background ongoing federal policies and provincial GHG 

reduction outcomes 
Provincial Policies Background Federal Policies (no associated provincial cost) 

Policy Cost Outcome Sources Policy Outcome Sources 

1. EV 

incentive 

$1,500 to $3,000 point-of-

purchase incentive per EV 

depending on powertrain 

Increase in BEV and 

PHEV purchased, 

reduction in G.LDV 

(British 

Columbia, 

2019) 

1. EV 

incentive 

Top-up point-of-purchase incentives 

which will further increase proportion 

of EVs sold and reduction in G.LDV 

(ECCC, 

2019) 

2. Replace 

provincially 

owned 

light-duty 

fleet with 

EV and bus 

fleet with 

BEB 

-$9,000 to -$3,000 per BEV 

depending on the difference in 

TOC1 

Increase in BEV 

purchased, reduction 

in G.LDV 

(Lutsey & 

Nicholas, 

2019; Plug’n 

Drive, 2020) 

2. Carbon 

price 

Increase in fuel price will further 

increase proportion of EV sold and 

reduction in G.LDV. 

(ECCC, 

2019) 

$0 to $76,000 per bus 

depending on the difference in 

TOC2 

Increase in BEB on 

road, reduction in 

D.Bus 

(Mohamed et 

al., 2018; 

Quarles et al., 

2020) 

3.Passenger 

Automobile 

and Light 

Truck 

Greenhouse 

Gas 

Emission 

Regulations 

Incremental reduction in operational 

emission intensity of G.LDV (Model 

year 2011 to 2025) 

(ECCC, 

2019) 3. Adding 

additional 

BEB  to 

network 

$3,560,000 to $3,640,000 per 

bus depending on the 

difference TOC3 

Decrease in G.LDV 

on road as a result of 

increased service and 

coverage 

(Mohamed et 

al., 2018; 

Quarles et al., 

2020) 

4. Subsidize 

user bus 

fare 

$4,300,000 per cent fare 

reduction to supplement 

transit agencies for every cent 

of fare reduced 

Decrease in G.LDV 

on road as a result of 

decreased fare 

(CUTA,2014; 

Kain and Liu, 

1999) 

4. Clean Fuel 

Standard 

Incremental reduction in emission 

intensity of fossil fuels 

(ECCC, 

2019) 

1 includes the price one charging station 
2 includes the price of overnight charging stations (1:2 buses) and on-route charging stations (3:10 buses)  
3 includes the total life-time operation costs ($356k annual salary for operational staff) of an additional bus in addition to the life-time cost difference between 

BEB and D.Bus 

* all prices in 2020 CAD  

 

3.2. Model Configuration 

An interval pure-integer programming model is developed to estimate the optimal provincial policy 

spending to achieve the 30% GHG reduction target within the passenger road transportation sub-sector 

between 2020 and 2030. The decision variables (𝑥1 … 𝑥6) represent integer units of transportation policy: 

Policy 𝑥1 and 𝑥2 correspond with the units of EV vehicle incentive rebate, policy 𝑥3 and 𝑥4 correspond to 
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the units of EV and BEB the government purchases, and policy 𝑥5 and 𝑥6 corresponds to the number of 

additional BEBs added to the network and the cent reduction in bus fare, respectively. The decision 

variables 𝑥𝑖, their optimistic and pessimistic cost 𝐶𝑖, and the corresponding justification is summarized in 

Table 2. The interval linear objective function is shown in Equation 1. It should be noted that the model 

only considers one ten-year time period, from 2020 to 2030.  

Table 2: Provincial policy actions (decision variables) and associated optimistic and pessimistic costs per unit policy 
 [𝑪𝒊

−, 𝑪𝒊
+] Justification Data source 

𝒙𝟏= BEV incentive $3,000 Clean BC incentive offering (British Columbia, 

2019) 𝒙𝟐= PHEV incentive $1,500 

𝒙𝟑 = Government BEV 

Replacement 

[-$9,000,  
-$3,000] 1 

The difference in TOC between conventional ICEV and 
BEV.  

(Lutsey & Nicholas, 

2019; Plug’n Drive, 

2020) 

𝒙𝟒 = BEB Replacement [$0, $76,000] 1 The difference in TOC between D.Bus and BEB. Range 

associated with fuel price, maintenance, and market price 

uncertainty. 

(Mohamed et al., 

2018; Quarles et al., 

2020) 

𝒙𝟓 = BEB Additional [$3,560,000, 

$3,640,000] 1 

Cost of additional bus and bus-operator added to network 

($356k annual salary).  

(Mohamed et al., 

2018; Quarles et al., 

2020) 

𝒙𝟔 = Cents Bus Fare 

Reduced 

$66,425,000 2 Estimated cost to supplement transit agencies for every 
cent of fare reduced for ten years.  

(CUTA, 2014; Kain 

& Liu, 1999) 

1 Range associated with life-cycle fuel price, maintenance, and market price uncertainty. 
2 See Table A- 1 for calculation details.  

 

𝑀𝑖𝑛 𝑓± = ∑ 𝐶𝑖
±𝑥𝑖

±6
𝑖=1          (1) 

Where: 

𝑥𝑖
± =  {𝑥𝑖|𝑥𝑖

− ≤ 𝑥𝑖 ≤ 𝑥𝑖
+} for a real set of numbers 

𝑖 = 1,2,…,6 is policy index 

𝐶𝑖 = cost per unit of policy with respect to policy index (i)  

The optimization model is subject to a non-negative integer decision variables and the following four 

groups of constraints: 

3.2.1. GHG Emissions Target Constraint 

The model is optimized under the 30% GHG reduction target (Equation 2) which describes the 

difference between the annual GHG emissions of the total forecasted vehicle fleet in 2030 (𝐺𝐻𝐺1) and the 

lower emission vehicle fleet in 2030 as a result of policy spending (𝐺𝐻𝐺2,𝐺𝐻𝐺3). The constraint was 

simplified under a few assumptions. 𝐺𝐻𝐺1 represents the forecasted vehicle fleet number and emissions 

in 2030 as a result of no-provincial action (only federal action).  𝐺𝐻𝐺2 represents the reduction of GHG 

emissions in 2030 as a result of the EV incentives; one EV incentive equals one new EV purchased in lieu 

of a new ICEV. 𝐺𝐻𝐺3 represents the reduction of GHG emissions as a result of increased additional bus 

service and reduced fare reduction; as ridership is assumed to increase, fewer new vehicles are purchased 

thus their emissions are subtracted from the total vehicle fleet. It is assumed that all policy spending 

decisions (provincial and federal action) is consistently applied for the full 10-year time period.  All 

coefficients in 𝐺𝐻𝐺1 and 𝐺𝐻𝐺2 are listed in Table A- 2 and the calculation of the modal shift coefficient 

variables in 𝐺𝐻𝐺3 is presented in Table A- 3. 

 

𝐺𝐻𝐺1 −  𝐺𝐻𝐺2 −  𝐺𝐻𝐺3  ≤  (1 − 30%) ∗ 31 𝑀𝑇 𝐶𝑂2 𝑒𝑞       (2) 
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𝐺𝐻𝐺1 = 𝐸𝐹𝐹.𝐿𝐷𝑉𝐹𝑁𝑉𝐿𝐷𝑉𝐾𝑀𝐿𝐷𝑉 + 𝐸𝐹𝐹.𝐵𝑈𝑆𝐹𝑁𝑉𝐵𝑈𝑆𝐾𝑀𝐵𝑈𝑆       (2a) 

𝐺𝐻𝐺2 = (∑ 𝐸𝐹𝐺.𝐿𝐷𝑉𝑥𝑖𝐾𝑀𝐿𝐷𝑉
3
𝑖=1 ) + 𝐸𝐹𝐷.𝐵𝑈𝑆𝑥4𝐾𝑀𝐵𝑈𝑆 − (∑ 𝐸𝐹𝑖𝑥𝑖𝐾𝑀𝑖

5
𝑖=1 )    (2b) 

𝐺𝐻𝐺3 = 𝐸𝐹𝐹.𝐿𝐷𝑉𝐾𝑀𝐿𝐷𝑉 (
𝐴𝑉𝑂𝐶𝐶𝐵𝑢𝑠+𝐴𝐷𝑂𝐶𝐶𝑓𝑎𝑟𝑒𝑥6+𝐴𝐷𝑂𝐶𝐶𝑎𝑑𝑑𝐵𝑢𝑠𝑥5

𝐴𝑉𝑂𝐶𝐶𝐿𝐷𝑉
𝑥5 + 𝐶𝑅𝑥6)    (2c) 

Where: 

𝐸𝐹 = average life-cycle emission factor (CO2 eq kg/km) for forecasted LDV (F.LDV), forecasted transit 

bus (F.Bus),  gasoline light-duty vehicle (G.LDV), diesel bus (D.Bus), and vehicle as a result of policy 

spending (i)   

𝐹𝑁𝑉 = forecasted number of vehicles on road in 2030 for light-duty vehicle (LDV) and transit bus (Bus)  

𝐾𝑀 =  average kilometers travelled in year for light-duty vehicle (LDV) and transit bus (Bus) 

𝑥𝑖 =  unit of policy purchased where i is from 1…6 

𝐴𝑉𝑂𝐶𝐶 =  average occupancy for light-duty vehicle (LDV) and transit bus (Bus)  

𝐴𝐷𝑂𝐶𝐶 =  increase in occupants per bus for each cent fare reduction (fare) and for each additional bus 

(addBus) 

𝐶𝑅 =  car removed for every 1 cent of bus fare reduction 

3.2.2. Vehicle sales constraint 

The number of EV purchased over ten years (equivalent to the number of incentives distributed) 

cannot realistically exceed a target proportion of total new vehicle sales. This constraint is simplified 

assuming the provincial incentives will further encourage an increase in annual EV sales in addition to the 

federal policies such that the 2030 annual sales will be between 20% (pessimistic case) and 30% 

(optimistic case assumption is derived from the BC 2030 EV sales target (British Columbia, 2019)). 

Additionally, it is assumed that the number of BEVs sold in the ten year period should be double the 

PHEVs sold based on historic consumer vehicle performance (Statistics Canada, 2019a). 

∑ 𝑥𝑖
3
𝑖=1  ≤ [11%, 16%] ∗ 𝐹𝑁𝑆𝐿𝐷𝑉         (3) 

𝑥1 + 𝑥3 −  2 ∗ 𝑥2 = 0           (3a) 

Where: 

 𝐹𝑁𝑆𝐿𝐷𝑉 is the forecasted number of LDV sold in the ten-year period (see Table A- 1 for values). 

3.2.3. Government vehicles 

The electrification of the government LDV and Bus fleet and expansion of the Bus fleet is 

realistically constrained. The LDV and Bus electrification is assumed not to exceed 80% and bus network 

expansion is assumed not to exceed three times the existing fleet.  

𝑥3 ≤ 80% ∗ 𝐹𝑁𝑉𝐿𝐷𝑉          (4a) 

𝑥4 ≤ 80% ∗ 𝐹𝑁𝑉𝐵𝑢𝑠          (4b) 

𝑥5 ≤ 3 ∗ 𝐹𝑁𝑉𝐵𝑢𝑠          (4c) 
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3.2.4. Fares 

The maximum fare reduction is constrained to 299 cents which reflects the upper bound of historic 

fare levels (CUTA, 2014).  

𝑥8 ≤ 299 𝑐𝑒𝑛𝑡𝑠           (5) 

 

4. Results and Discussion 

The estimated GHG reduction in Ontario’s passenger road transportation subsector without 

provincial action (just federal action), provincial action with optimistic EV sales and TOC projections, 

and provincial action with pessimistic EV sales and TOC projections are shown in Figure 1. If no 

provincial policies are implemented, it is estimated that the federal action alone will result in a 17% 

reduction of GHG emissions below 2005 levels in 2030, missing the 30% target by 4 MT of CO2 eq.  To 

achieve the 30% target, between $50 billion (optimistic) to $98 billion (pessimistic) will need to be spent 

in EV incentives, government fleet replacement, bus network expansion and bus fare subsidies.  

 

Figure 1: Estimated GHG emission reduction and cost in 2030 with and without provincial action 

The optimistic scenario depicts the policy costs associated with meeting the 2030 30% annual EV 

sales target and an optimistic EV TOC savings compared to G.LDVs of the same model year. The 

breakdown of costs and associated number of units for each policy is presented in Figure 2 for both EV 

scenarios. In both EV scenarios, once the EV sales constraint and the replacement of D.Bus for BEB is 

met, the subsidization of bus fare is favoured and then the addition of new BEBs to the network is 

selected. Both scenarios are constrained by the GHG emission target and the conventional provincial fleet 

which can be replaced by EVs and BEBs. As the pessimistic scenario has a lower EV sales target (20% of 

2030 vehicle sales are EV), the GHG reduction target is met through the more expensive option of adding 

additional BEBs to the transit network (13,351 additional BEBs). 
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Figure 2: Optimized ten-year cost of associated GHG reduction policies under optimistic and pessimistic EV sales scenarios 

 

Once the maximum number of buses are converted to BEBs, both optimistic and pessimistic 

scenarios suggest that incentivizing the purchase of EVs through point-of-purchase incentives is the most 

cost-effective way of achieving the GHG emission reduction target from the short-term policies 

evaluated. Feasibly seeing an increase in EV sales which exceeds a proportion of 16% EVs of all new 

vehicle sales (16% of vehicles purchased from 2020 to 2030) is unrealistic based on historical trends and 

the incentive offerings. However, if the proportion of EV sales was constrained, 23% of all new vehicles 

sold in the ten-year period would need to be EVs to reach the 2030 GHG reduction target. Assuming 

linear growth in EV sales from 3% in 2020, this would represent 43% of annual EV sales in 2030. If the 

same incentives remained in place, the ten-year cost would only be between $4.9 and $5.6 billion. The 

cost breakdown assuming optimistic and pessimistic TOC estimations for government BEV and BEB 

assuming unconstrained EV sales is provided in Figure 3. 

 

Figure 3: Optimized ten year policy cost with no EV sales constraint 
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(1,346,250 

units)

$1,021 (680,725 units)

-$137 

(15,200 

units)

$- (7,200 units)

$- (0 units)

$- (0 cents)

-$46 

(15,200 

units)

$547 (7,200 units)

BEV (X1)

PHEV (X2)

Gov. BEV (X3)

BEB (X4)

Additional BEB (X5)

Fare Reduction (X6)

$ in million CAD

Optimistic EV

Scenario

Pessimistic EV

Scenario
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Achieving the GHG reduction target by 2030 under the short-term policies considered and the 

associated 20 to 30% EV sales assumptions is costly but not infeasible as it is equal to 3%- 6% of the 

annual budget ($150 billion in 2018-2019 (Ontario, 2019a)) every year for the ten-year period. It should 

also be noted that the most cost-effective GHG reduction policies are firstly the conversion of D.Bus to 

BEB and secondly the EV incentives; while these two policies alone are not sufficient to reach the 2030 

target, they should be priority when considering short-term GHG reduction within the transportation 

sector.  

Furthermore, while 30% EV sales target in 2030 is realistically feasible through EV incentives it can 

also be achieved (or exceeded) through the combination of other more cost-effective financial policies 

included in the model which would reduce the required spending. For instance, an EV sales mandate is in 

effect in Quebec in addition to point-of-purchase incentives (Quebec, 2020). The EV sales mandate 

legislates auto dealerships to sell a certain percentage of EVs annually which has been shown to secure 

consistent supply, a significant deterrent to EV adoption (Melton et al., 2017). Other non-financial 

methods can also be considered such as increased awareness of EV benefits (reduced TOC, green plate 

benefits, access to high-occupancy vehicle lanes, etc.) and continued spending on public charging 

infrastructure to combat range anxiety (Ferguson et al., 2018; Lin & Greene, 2011; Melton et al., 2017). 

This results and methodology of this study presents some limitations due to the assumptions made. 

For instance, the largest cost for both EV scenarios attributed to the expansion of the bus network (the 

lifetime cost of bus operation, maintenance) and the impact of bus fare subsidization. The relationship 

assumed between the increase in additional buses, decrease in bus fare, and the resulting increase in bus 

occupants and decrease in vehicles on the road is a highly simplified deterministic quadratic relationship 

(Table A- 3). The parameters were tailored to represent the population areas of Ontario but a more 

sophisticated modeling technique and local data which is not accessible to the author is needed to 

represent the complex relationships. Further, fare subsidisation can take many forms, such as a direct 

decrease in bus-fare for all riders (as modelled), a decrease in bus fare for targeted groups, a decrease in 

monthly ridership cards, a frequent-rider reward, among others (Liu et al., 2019). The cost-effectiveness 

of a fare reform should be considered in conjunction with the built-environment, land-use, and socio-

economic demographics as all these factors contribute to how responsive people are in shifting their travel 

behaviours (Liu et al., 2019). Efforts to quantify externalities which offset the cost of transit expansion 

and integrate other modes of public transportation such as rail and ridesharing will lead to more accurate 

(and cost-effective) estimates. 

Limitations on the estimation of life-cycle GHG emissions also present a degree of uncertainty due 

to the lack of data available. Manufacturing and operating emissions were sourced from GHGenius, a life-

cycle emissions tool used by Natural Resources Canada (NRC) ((S&T)2 Consultants Inc, 2018). The tool 

forecasts the emissions for the input target year and province, but a detailed methodology is lacking and a 

range in estimates is not provided. Estimating the emissions reduction through the simulation of vehicle 

operating characteristics (e.g. grade, passenger occupancy, vehicle-kilometre travelled, route and charging 

characteristics, carbon intensity of fuel and electricity pathways, and ambient conditions), which have 

been concluded to significantly impact emissions produced and energy consumed (Bishop et al., 2019; 

Kivekäs et al., 2018; Rupp et al., 2019). Including the variability of these characteristics would improve 

estimates by defining the range of GHG reduction uncertainty.  
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5. Conclusion and Future Work 

In combination with the ongoing federal Pan-Canadian climate change policies, Ontario can achieve 

a 30% reduction in 2005 levels within the road passenger transportation sector by 2030 through point-on-

purchase EV incentives, bus electrification, expansion of the bus network, and through bus fare subsidies. 

While the policy measures are costly ($50 to $100 billion over ten years), the integer quadratic 

programming model presents the most cost-effective allocation of funding to each policy. The creation of 

a pessimistic and optimistic scenarios through interval programming techniques addresses some of the 

uncertainties associated with policy costs such as forecasting EV sales and total cost of ownership. The 

model also provides a novel approach to optimizing the cost of GHG mitigation from the perspective of 

policy outcomes and with the integration of differing types of policy action (policies which encourage 

emerging technology uptake and policies which target a shift in travel behaviour). The development of 

simplified models which demonstrate the relationship between policy funding and GHG outcomes can 

help support transparent decision-making towards reduction targets.  

There is plenty of room for future work. The model does not consider the current or future short-term 

electricity capacity requirements. As increased electrification will result in higher energy demand, a low-

carbon intensity electricity grid capacity is vital to support GHG mitigation efforts. Temporal 

considerations for EV charging should also be considered as the source of electricity will influence the 

mitigation potential of EVs (Gai et al., 2019; Karan et al., 2016). The model results suggest that in the 

short-term Ontario can witness a reduction in GHG emissions through electrification (i.e. reduction in 

energy demand), however, to achieve long-term decarbonization (targets for 2050 and onwards) 

continued efforts are needed to decarbonizing the province’s energy systems (L. Hughes et al., 2020) and 

through the reduction of total kilometres travelled per vehicle. 
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Appendix  

Table A- 1: Calculation of the ten-year cost of one cent of bus fare reduction  

The cost of one cent bus fare reduction over ten years is based on the following relationship  

𝑏𝑢𝑠 𝑓𝑎𝑟𝑒 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑓𝑎𝑟𝑒 ∗ 𝑟𝑖𝑑𝑒𝑟𝑠 

If a proportional decrease in fare is equal to the proportional increase in ridership then revenue is 

unaffected. (Kain & Liu, 1999) found that in San Diego over the course of 10 years of transit expansion 

and fare subsidies, ridership increased at a rate of 5% due to a corresponding 14%  fare reduction. 

This relationship is applied to Ontario and it is assumed that provincial funding is proportionally 

distributed based on population and suburban and rural areas are less likely to increase their ridership 

than urban areas. The following is assumed: 

• Bus fare can only be reduced a maximum of 300 cents. 

• An annual provincial bus fare revenue of $2.5 billion (CUTA, 2014) is assumed over 10 years. 

• Based off the (Kain & Liu, 1999), it is assumed that for a 14% fare decrease, ridership will 

increase 5% in urban, 3.5% in suburban (1/2 of urban) and 1% (1/5 of urban) in rural areas. 

• 70% of the population lives in suburban, 20% live in urban, and 10% live in rural areas. 

 

$66,425,000 =  $25,000,000,000 ∗ (1 − (1 −
1

300
) ∗ (1 +

1

300
∗

70% ∗ 2.5% + 20% ∗ 5% + 10% ∗ 1% 𝑟𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 

14% 𝑓𝑎𝑟𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
))  

 

 

Table A- 2: Vehicle coefficients for GHG emissions target constraint 
Index  Life-cycle 

Emission 

Factor (𝐸𝐹) 

(CO2 eq 
kg/km) 

Forecasted 

number of 

vehicles in 
2030 

(FNV) 

Forecaste

d number 

of 
vehicles 

sold from 

2020 to 
2030 

(FNS) 

Kilometre

s travelled 

a year 
(KMT) 

2020 2030 2020 203

0 

Total 
life-cycle 

emission

s 

Manufacturin
g 

WTT (fuel 
production

) 

TTW 
(operatin

g 

emissions
) 

Total life-
cycle 

emissions 

  

Gasolin

e LDV 

(G.LDV
) 

- 22.7 34.3 120.5 177.5 1 233.9

6 

 10,300,00

0 or which 

19,000 are 
governme

nt owned 2 

8,760,000 14,5001 

EV 

(i=1, 
i=3) 

- 26.3 19.4 0 45.7 1 59.66  

PHEV 

(i=2) 

- 25.4 21 36 82.4 1 71.11  

F.LDV 223.7 1 - - - 0.92(G.LD

V) + 

0.05(EV) + 

0.03(PHEV) 

220.3

6 3 

 

Diesel 

Bus 

(D.Bus) 

-  30.9 399.4 1338.4 1768.8 4   9,0005  

 

- 43,647 6 

BEB 
(i=4, 

i=5) 

- 36.6 5 149.3 0 185.9 4   

F.BUS  1794.0 4 - - - 0.9(D.Bus) 

+ 0.1(EB)  

  

  1 Ontario, target year 2020 and 2030, Gasoline low sulfur LDV, Battery Electric LDV, and PHEV - 

EV50/Gasoline50km  LDV  ((S&T)2 Consultants Inc, 2018) 
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2  Forecasted assuming historic 16% growth in registered LDV (as seen in 1999-2009 and 2009-2019 (Statistics 
Canada, 2019b) and extrapolating from the number of municipal light-duty vehicles owned in Toronto (3,800) 

and it is 20% Ontario’s population (City of Toronto, 2020). 
3  Composition of  ‘provincial do nothing’ fleet in 2030 forecast from historic annual EV sales in BC (2009 – 
2019) and federal action estimates (British Columbia, 2019; ECCC, 2019). It assumes that the proportion of EV 

will grow from 3% annual sales (in 2020) to 15% annual sales in 2030 representing. In 2030, assuming a linear 

growth in proportional EV sales, this will result in 8% of the vehicle fleet will be electric assuming a lifecycle 
of ten years (5% will be EV and 3% will be PHEV based on historic sales proportion).  
4 Canada, target year 2020 and 2030, Gasoline Diesel Bus, and Battery Electric Bus  ((S&T)2 Consultants Inc, 

2018) 
5 Forecasted from Canada-wide historic urban transit bus stock growth from 2008-2018 assuming number of 

buses is proportion to the population in Ontario (40%) (Statistics Canada, 2018) 

6 Average KMT driven by bus (USDOE, 2020) 

 

Table A- 3: Modal shift coefficients for GHG emissions target constraint 

It is assumed that an increase in buses added to the network (𝑥5) and a decrease in bus fare (𝑥6) will result 

in a reduction of LDV on the road as estimated in the following quadratic relationship: the average LDV (1.5) and 

bus occupancies (10.5), the maximum average bus occupancy (30), the maximum bus fare reduction (300 cents), 

the maximum number of buses that can be added to the network (18,000), and the estimated number of bus riders 

(2,100,000) assuming 70% of their trips are on bus, is used to establish the quadratic relationship described 

below:  

𝐴𝑉𝑂𝐶𝐶𝐵𝑢𝑠 = 10.5 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 𝑝𝑒𝑟 𝑏𝑢𝑠  

𝐴𝐷𝑂𝐶𝐶𝑓𝑎𝑟𝑒 =  (
1 𝑐𝑒𝑛𝑡

300 𝑐𝑒𝑛𝑡𝑠
∗

5% 𝑟𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

14% 𝑓𝑎𝑟𝑒 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 
) ∗ 10.5 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 = 0.0125 

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 𝑝𝑒𝑟 𝑏𝑢𝑠

𝑜𝑛𝑒 𝑐𝑒𝑛𝑡 𝑓𝑎𝑟𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 
   

𝐴𝐷𝑂𝐶𝐶𝑎𝑑𝑑𝐵𝑢𝑠 = (
30 𝑚𝑎𝑥 𝑏𝑢𝑠 𝑜𝑐𝑐 −(10.5+0.012∗299 𝑐𝑒𝑛𝑡𝑠)

18,000 𝑏𝑢𝑠𝑒𝑠
) =  0.00083 

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 𝑝𝑒𝑟 𝑏𝑢𝑠

 𝑎𝑑𝑑𝑖𝑡𝑜𝑛𝑎𝑙 𝑏𝑢𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 
   

𝐴𝑉𝑂𝐶𝐶𝐵𝑢𝑠 = 1.5 occupants per LDV 

𝐶𝑅 = 1176 
𝑐𝑎𝑟𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝑜𝑛𝑒 𝑐𝑒𝑛𝑡 𝑓𝑎𝑟𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 
=  

2,100,000  𝑏𝑢𝑠 𝑟𝑖𝑑𝑒𝑟𝑠 ∗ %70 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠 𝑜𝑛 𝑏𝑢𝑠 ∗ 0.0012 
% 𝑟𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

𝑐𝑒𝑛𝑡 𝑏𝑢𝑠 𝑓𝑎𝑟𝑒  𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

1.5 
𝑜𝑐𝑐

𝑐𝑎𝑟

 

* The 14% fare decrease resulting in a 5% ridership increase is sourced from (Liu et al., 2019) 

* maximum average bus occupancy is assumed to be 30 

*maximum number of buses that can be added to the network is 18,000 (2 times the forecasted no-

provincial policy action 2030 bus fleet). 

*forecasted provincial population of 16.6 million in 2030 (Ontario, 2019b), assuming 13% are 

commuting transit riders, this is 2.1 million riders. Assumed that 70% of the trips are commuting trips   

 

 

 


